Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Neuronal Identity Established by Specific Transcription Factors

By LabMedica International staff writers
Posted on 21 May 2018
A team of neurodegenerative disease researchers has developed a protocol for the consistent transformation of stem cells of fibroblast origin into specific classes of neurons for brain research and drug development.

Transient expression of certain transcription factors has been found to endow non-neural cells with neuronal properties. More...
The relationship between reprogramming factors and the transcriptional networks that produce neuronal identity and diversity remains largely unknown.

To study this process, investigators at The Scripps Research Institute (La Jolla, CA; USA) screened 598 pairs of transcription factors in a mouse model system.

They reported in the May 9, 2018, online edition of the journal Nature that 76 pairs of transcription factors (12.7%) induced mouse fibroblasts to differentiate into cells with neuronal features. By comparing the transcriptomes of these induced neuronal cells (iN cells) with those of natural neurons, the investigators defined a "core" cell-autonomous neuronal signature. The iN cells also exhibited diversity; each transcription factor pair produced iN cells with unique transcriptional patterns that could predict their pharmacological responses. By linking distinct transcription factor input "codes" to defined transcriptional outputs, these findings delineated cell-autonomous features of neuronal identity and diversity and expanded the reprogramming toolbox to facilitate engineering of induced neurons with desired patterns of gene expression and related functional properties.

"The brain is incredibly complex, with thousands of different types of cells that are each involved in different diseases," said senior author Dr. Kristin Baldwin, a professor at the Scripps Research Institute. "The problem with understanding and treating the many disorders of the brain is that we cannot reproducibly produce the right types of brain cells. Now we have found more than 75 new ways to rapidly and reproducibly turn skin cells into neurons that we think will be much better representatives of different neurologic diseases than were previously available. Having a personalized and nearly unlimited supply of different types of neuronal cells in a dish lets you uncover what is going wrong in a disease. At the same time, the study supplies a new toolkit to test thousands of drugs on the affected cells to try to reverse the problems, rather than having to test them in mice or other animals, with results that are often difficult to interpret for human conditions."

Related Links:
The Scripps Research Institute


New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Portable Electronic Pipette
Mini 96
Laboratory Software
ArtelWare
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.