We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




PB Transposon Mutagenesis Identifies Malaria Genes and Drug Targets

By LabMedica International staff writers
Posted on 15 May 2018
A team of genome researchers took advantage of the unusual nucleotide composition of Plasmodium falciparum DNA to create mutant strains of the malaria parasite in order to identify essential genes and potential drug targets.

Malaria remains a devastating global parasitic disease, with the majority of malaria deaths caused by the highly virulent P. More...
falciparum. The extreme adenine-thymine (AT)-bias of the P. falciparum genome has hampered genetic studies through targeted approaches such as homologous recombination or CRISPR/Cas9, and only a few hundred P. falciparum mutants have been experimentally generated in the past decades.

Investigators at the University of South Florida (Tampa, USA) exploited the AT-richness of the P. falciparum genome by using piggyBac transposon insertion sites to achieve saturation-level mutagenesis. The enriched A-T composition of the P. falciparum genome presented numerous piggyBac transposon insertion targets within both gene coding and noncoding flanking sequences.

PiggyBac (PB) transposons are mobile genetic elements that efficiently transpose between vectors and chromosomes via a "cut and paste" mechanism. During transposition, the PB transposase recognizes transposon-specific inverted terminal repeat sequences (ITRs) located on both ends of the transposon vector and efficiently moves the contents from the original sites and efficiently integrates them into TTAA (thymine-thymine-adenine-adenine) chromosomal sites. The powerful activity of the piggyBac transposon system enables genes of interest between the two ITRs in the PB vector to be easily mobilized into target genomes. The TTAA-specific transposon piggyBac is rapidly becoming a highly useful transposon for genetic engineering of a wide variety of species, particularly insects.

The investigators reported in the May 4, 2018, online issue of the journal Science that by using transposon mutagenesis of P. falciparum they generated more than 38,000 mutants, saturating the genome and defining mutability and fitness costs for over 87% of genes. Of 5399 genes, the study defined 2680 genes as essential for optimal growth of asexual blood stages in vitro.

Genes predicted to be essential included genes implicated in drug resistance as well as targets considered to be of high value for drugs development. Furthermore, the screen revealed essential genes that were specific to human Plasmodium parasites but absent from rodent-infective species, such as lipid metabolic genes that may be crucial to transmission commitment in human infections.

"This is a transformative advance," said senior author Dr. John H. Adams, professor of global health at the University of South Florida. "The genome of this malaria parasite has been resistant to most methods in the modern genetics toolbox. Consequently, functional importance of only a few hundred genes was determined. Using piggyBac mutagenesis, our new genetic tool, we have functionally characterized nearly all of the parasite's genes. Identifying essential genes and pathways will help guide and accelerate future drug and vaccine development."

Related Links:
University of South Florida


New
Gold Member
Collection and Transport System
PurSafe Plus®
Collection and Transport System
PurSafe Plus®
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.