Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanoparticle Delivery Increases Effectiveness of Anti-Cancer Immunotherapy

By LabMedica International staff writers
Posted on 10 May 2018
A nanoparticle delivery system was used to transport antibody-based immunotherapeutic drugs in trials conducted in cancer cell in vitro cultures and in animal models.

Combination immunotherapy has recently emerged as a powerful cancer treatment strategy. More...
A promising treatment approach is based on the simultaneous administration of antagonistic antibodies to block checkpoint inhibitor receptors, such as anti-programmed cell death‐1 (PD1). Immune checkpoints are regulators of the immune system. These pathways are crucial for self-tolerance, which prevents the immune system from attacking cells indiscriminately.

In this treatment strategy, antibodies targeting checkpoint inhibitor receptors are given together with agonistic antibodies to activate co-stimulatory receptors, such as anti-tumor necrosis factor receptor superfamily member 4 (OX40). OX40's value as a drug target resides primarily in it being transiently expressed after T-cell receptor engagement. It is only upregulated on the most recently antigen-activated T-cells within inflammatory lesions.

Optimal T‐cell activation is achieved when both immunomodulatory agents simultaneously engage T‐cells and promote synergistic pro-activation signaling. However, standard administration of these therapeutics as free antibodies results in suboptimal T‐cell binding events, with only a subset of the T‐cells binding to both PD1 and OX40.

To increase the changes of simultaneous binding of both classes of antibody, investigators at the University of North Carolina (Chapel Hill, USA) developed nanoparticles capable of simultaneous co-delivery of antibodies to PD1 and OX40.

They reported in the April 25, 2018, online edition of the journal Advanced Materials that using these dual immunotherapy nanoparticles (DINP) resulted in improved T‐cell activation, enhanced therapeutic efficacy, and increased immunological memory. They demonstrated that DINP elicited higher rates of T‐cell activation in vitro than free antibodies. Furthermore, they showed in two tumor models that combination immunotherapy administered in the form of DINP was more effective than the same regimen administered as free antibodies.

"Our study suggests that if you are able to present two different therapeutics at the same time to immune cells to help them fight cancer, the effect is greater," said senior author Dr. Andrew Z. Wang, associate professor of radiation oncology at the University of North Carolina. "It is difficult to deliver them at the same time unless you tie them together, and a nanoparticle is one great way to tie the two together."

"Our immune cells have both positive and negative signals, like red lights and green lights," said Dr. Wang. "It is part of the balance of the immune system - if you get too much immune activation, you get autoimmune disease. If you go the other way, the lack of immune suppression can give you tumors. We are studying a combination of treatments that both send green light signals to attack, and to block red light signals."

Related Links:
University of North Carolina


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Portable Electronic Pipette
Mini 96
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
New
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.