We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Nanoparticle Delivery Increases Effectiveness of Anti-Cancer Immunotherapy

By LabMedica International staff writers
Posted on 10 May 2018
Print article
Image: Nanoparticles loaded with the dual immunotherapy platform (Photo courtesy of UNC Lineberger Comprehensive Cancer Center).
Image: Nanoparticles loaded with the dual immunotherapy platform (Photo courtesy of UNC Lineberger Comprehensive Cancer Center).
A nanoparticle delivery system was used to transport antibody-based immunotherapeutic drugs in trials conducted in cancer cell in vitro cultures and in animal models.

Combination immunotherapy has recently emerged as a powerful cancer treatment strategy. A promising treatment approach is based on the simultaneous administration of antagonistic antibodies to block checkpoint inhibitor receptors, such as anti-programmed cell death‐1 (PD1). Immune checkpoints are regulators of the immune system. These pathways are crucial for self-tolerance, which prevents the immune system from attacking cells indiscriminately.

In this treatment strategy, antibodies targeting checkpoint inhibitor receptors are given together with agonistic antibodies to activate co-stimulatory receptors, such as anti-tumor necrosis factor receptor superfamily member 4 (OX40). OX40's value as a drug target resides primarily in it being transiently expressed after T-cell receptor engagement. It is only upregulated on the most recently antigen-activated T-cells within inflammatory lesions.

Optimal T‐cell activation is achieved when both immunomodulatory agents simultaneously engage T‐cells and promote synergistic pro-activation signaling. However, standard administration of these therapeutics as free antibodies results in suboptimal T‐cell binding events, with only a subset of the T‐cells binding to both PD1 and OX40.

To increase the changes of simultaneous binding of both classes of antibody, investigators at the University of North Carolina (Chapel Hill, USA) developed nanoparticles capable of simultaneous co-delivery of antibodies to PD1 and OX40.

They reported in the April 25, 2018, online edition of the journal Advanced Materials that using these dual immunotherapy nanoparticles (DINP) resulted in improved T‐cell activation, enhanced therapeutic efficacy, and increased immunological memory. They demonstrated that DINP elicited higher rates of T‐cell activation in vitro than free antibodies. Furthermore, they showed in two tumor models that combination immunotherapy administered in the form of DINP was more effective than the same regimen administered as free antibodies.

"Our study suggests that if you are able to present two different therapeutics at the same time to immune cells to help them fight cancer, the effect is greater," said senior author Dr. Andrew Z. Wang, associate professor of radiation oncology at the University of North Carolina. "It is difficult to deliver them at the same time unless you tie them together, and a nanoparticle is one great way to tie the two together."

"Our immune cells have both positive and negative signals, like red lights and green lights," said Dr. Wang. "It is part of the balance of the immune system - if you get too much immune activation, you get autoimmune disease. If you go the other way, the lack of immune suppression can give you tumors. We are studying a combination of treatments that both send green light signals to attack, and to block red light signals."

Related Links:
University of North Carolina

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Creatine Kinase-MB Assay
CK-MB Test
New
Amoebiasis Test
ELI.H.A Amoeba

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.