We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Ultrasensitive Imaging Enables Characterization of Individual Nanoparticles

By LabMedica International staff writers
Posted on 26 Apr 2018
Print article
Image: An atomic force microscope inside a FTIR spectrometer with the optical interface (Photo courtesy of Wikimedia Commons).
Image: An atomic force microscope inside a FTIR spectrometer with the optical interface (Photo courtesy of Wikimedia Commons).
An advanced ultrasensitive imaging technique was used to analyze and characterize extracellular vesicles derived from two types of placenta stem cells.

Extracellular vesicles (EVs) are highly specialized, nanoscale messengers that deliver biological signals and in doing so mediate intercellular communication. Increasing evidence shows that within populations of EVs, important properties including morphology, membrane composition, and content vary substantially. This heterogeneity arises in response to the nature, state, and environmental conditions of the cell source. However, currently there are no effective approaches, which unequivocally discriminate differences between individual EVs. This lack critically hampers progress in this emerging scientific area. Measuring EV heterogeneity is paramount to our understanding of how EVs influence the physiological and pathological functions of their target cells. Moreover, understanding EV heterogeneity is essential for their application as diagnostics and therapeutics.

To evaluate and understand EV heterogeneity, investigators at the University of Sydney (Australia) developed an innovative approach using resonance enhanced atomic force microscope infrared spectroscopy (AFM-IR) to identify the nanoscale structural composition of EVs.

AFM-IR is one of a family of techniques that are derived from a combination of two parent instrumental techniques; infrared spectroscopy and scanning probe microscopy (SPM). Novel extensions of the original AFM-IR technique and earlier techniques have enabled the development of bench-top devices capable of nanometer spatial resolution that do not require a prism and can work with thicker samples, and thereby greatly improving ease of use and expanding the range of samples that can be analyzed. The particular strength of this approach is that it is a label-free and ultra-high sensitivity technique that has the power to measure individual EV heterogeneity.

The investigators reported in the April 4, 2018, online edition of the journal Nanoscale Horizons that they had validated the use of AFM-IR by characterizing EVs derived from two types of placenta stem cells.

"This really is at the cutting edge of our knowledge of cellular development," said Dr. Wojciech Chrzanowski, associate professor of pharmacy and nanotechnology at the University of Sydney. "EVs could not only be used to identify cellular pathologies but because they carry essential information about cell development, we could engineer them for purposes of tissue repair. The human body naturally directs EVs from stem cells to damaged tissue to assist in its repair. By harnessing this knowledge, we could create a new generation of cell therapies."

Related Links:
University of Sydney

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malondialdehyde HPLC Test
Malondialdehyde in Serum/Plasma – HPLC
New
Nutating Mixer
Enduro MiniMix

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.