Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Finnish Study Describes Activators of SIRT6 Gene

By LabMedica International staff writers
Posted on 17 Apr 2018
A team of Finnish researchers conducted a study to evaluate the differences in chemical features between inhibitors and activators of the cancer-related SIRT6 gene.

SIRT6 (Sirtuin 6) is a chromatin-associated enzyme that is required for normal base excision repair of DNA damage in mammalian cells. More...
Deficiency of SIRT6 in mice leads to abnormalities that overlap with aging-associated degenerative processes. SIRT6 also promotes the repair of DNA double-strand breaks by the process of non-homologous end joining.

Flavonoids are polyphenolic secondary metabolites synthesized by plants and fungi with various pharmacological effects. Due to their many classes of biological activity, they have been studied extensively in drug development. Flavonoids have been shown to modulate the activity of a NAD+-dependent histone deacetylase, SIRT6. Since SIRT6 has been implicated in longevity, metabolism, DNA-repair, and inflammatory response reduction, it is an interesting target in inflammatory and metabolic diseases as well as in cancer.

Investigators at the University of Eastern Finland (Kuopio, Finland) reported in the March 7, 2018, online edition of the journal Scientific Reports that flavonoids could alter SIRT6 activity in a structure dependent manner. Catechin derivatives with galloyl moiety displayed significant inhibition potency against SIRT6 at 10 microMolar concentration. The most potent SIRT6 activator, cyanidin, belonged to the family of anthocyanidins, and produced a 55-fold increase in SIRT6 activity compared to the three to 10-fold increase for the others. Cyanidin was also found to significantly increase SIRT6 expression in human colon adenocarcinoma Caco-2 cells. Cyanidin also decreased the expression of the TWIST1 and GLUT1 cancer promoter genes in Caco-2 cells, while increasing the expression of the tumor suppressor FOXO3 gene in the cells.

Results from docking studies indicated possible binding sites for SIRT6 inhibitors and activators. Inhibitors likely attached in a manner that could disturb NAD+ binding. The putative activator-binding site was found next to a loop near the acetylated peptide substrate-binding site. In some cases, the activators changed the conformation of this loop suggesting that it might play a role in SIRT6 activation.

"The most interesting results of our study relate to cyanidin, which is an anthocyanin found abundantly in wild bilberry, blackcurrant, and lingonberry," said first author Dr. Minna Rahnasto-Rilla, pharmacology researcher at the University of Eastern Finland.

Related Links:
University of Eastern Finland


New
Gold Member
Automatic CLIA Analyzer
Shine i9000
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.