Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nano-Imaging Reveals Links to Regulation of Bone Mineralization

By LabMedica International staff writers
Posted on 16 Apr 2018
A team of bioengineers applied a hi-tech nano-imagining technique to determine the mechanisms involved in the initialization and regulation of the process of bone mineralization.

Mineralization of collagen is critical for the mechanical functions of bones and teeth. More...
Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors.

To develop a better understanding of the mechanisms underlying bone mineralization, investigators at Washington University (St. Louis, Mo, USA) turned to the Advanced Photon Source at the Argonne National Laboratory (Lemont, IL, USA). They used this tool to apply the technique of in situ small-angle X-ray (SAXS) scattering in order to study calcium phosphate nucleation in the collagen gap (a space about two nanometers high by 40 nanometers wide).

They investigators described in the March 6, 2018, online edition of the journal Nature Communications the results they had obtained using in situ X-ray scattering observations and classical nucleation theory. They reported obtaining nucleation energy barriers to intra- and extrafibrillar mineralization (IM and EM). Polyaspartic acid, an extrafibrillar nucleation inhibitor, increased interfacial energies between nuclei and mineralization fluids. In contrast, the confined gap spaces inside collagen fibrils lowered the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guided the two-dimensional morphology and structure of bioapatite and changed the nucleation pathway by reducing the total energy barrier.

“When we understand how new bone forms, we can modulate where it should form,” said senior author Dr. Young-Shin Jun, professor of energy and environmental and chemical engineering at Washington University. “Previously, we thought that collagen fibrils could serve as passive templates, however, this study confirmed that collagen fibrils play an active role in biomineralization by controlling nucleation pathways and energy barriers. If we can tweak the chemistry and send signals to form bone minerals faster or stronger, that would be helpful to the medical field.”

“Confined space is a somewhat exotic space that we have not explored much, and we are always thinking about new material formation without any limitation of space,” said Dr. Jun. “However, there are so many confined spaces, such as pores in geomedia in subsurface environments or in water filtration membranes, where calcium carbonate or calcium sulfate form as scale. This paper is a snapshot of one health aspect, but the new knowledge can be applied broadly to energy systems and water systems.”

Related Links:
Washington University
Argonne National Laboratory


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Portable Electronic Pipette
Mini 96
New
ESR Analyzer
TEST1 2.0
New
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AiPlex VAS for the MosaiQ platform is designed to help reduce time-to-diagnosis for patients with autoimmune vasculitis (Photo courtesy of AliveDx)

Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis

Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.