We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Critical Brain Cell Repair Gene Identified in Study

By LabMedica International staff writers
Posted on 10 Apr 2018
Repair of damaged brain cells depends on the process of astrogliosis, which has been shown to be regulated by the MAP3K13 (also known as leucine zipper-bearing kinase [LZK]) gene.

Astrogliosis (also known as reactive astrocytosis) is an abnormal increase in the number of astrocytes due to the destruction of nearby neurons from CNS trauma, infection, ischemia, stroke, autoimmune responses, or neurodegenerative disease. More...
In healthy neural tissue, astrocytes play critical roles in energy provision, regulation of blood flow, homeostasis of extracellular fluid, homeostasis of ions and transmitters, regulation of synapse function, and synaptic remodeling. Astrogliosis changes the molecular expression and morphology of astrocytes, causing scar formation and, in severe cases, inhibition of axon regeneration.

In a recently published paper investigators at the University of Texas Southwestern Medical Center (Dallas, USA) used genetic loss and gain-of-function analyses in vivo, to show that the conserved LZK promoted astrocyte reactivity and glial scar formation after CNS injury.

The investigators reported in the March 27, 2018, issue of the journal Cell Reports that inducible LZK gene deletion in astrocytes of adult mice reduced astrogliosis and impaired glial scar formation, resulting in increased lesion size after spinal cord injury. Conversely, LZK overexpression in astrocytes enhanced astrogliosis and reduced lesion size. Remarkably, in the absence of injury, LZK overexpression alone induced widespread astrogliosis in the CNS and upregulated astrogliosis activator genes pSTAT3 and SOX9.

"We have known that astrocytes can help the brain and spinal cord recover from injury, but we did not fully understand the trigger that activates these cells," said contributing author Dr. Mark Goldberg, professor of neurology and neurotherapeutics at the University of Texas Southwestern Medical Center. "Now we will be able to look at whether turning on the switch we identified can help in the healing process."

Related Links:
University of Texas Southwestern Medical Center


New
Gold Member
Hematology Analyzer
Medonic M32B
Collection and Transport System
PurSafe Plus®
New
Pipette
Accumax Smart Series
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AiPlex VAS for the MosaiQ platform is designed to help reduce time-to-diagnosis for patients with autoimmune vasculitis (Photo courtesy of AliveDx)

Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis

Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.