We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Less Toxic Drugs May Replace Current Chemotherapeutic Agents

By LabMedica International staff writers
Posted on 04 Apr 2018
Print article
Image: A family of economical silver-based complexes shows very promising results against a number of human cancers in laboratory tests, with very low toxicity in rat studies and minimal effects on healthy cells. One of these complexes, UJ3, is as effective as the industry-standard drug Cisplatin in killing cancer cells in laboratory tests done on human esophageal cancer, breast cancer, and melanoma. This matrix of light microscope images shows a comparison of human esophageal cancer cells treated with UJ3 and Cisplatin (Photo courtesy of Dr. Zelinda Engelbrecht, University of Johannesburg).
Image: A family of economical silver-based complexes shows very promising results against a number of human cancers in laboratory tests, with very low toxicity in rat studies and minimal effects on healthy cells. One of these complexes, UJ3, is as effective as the industry-standard drug Cisplatin in killing cancer cells in laboratory tests done on human esophageal cancer, breast cancer, and melanoma. This matrix of light microscope images shows a comparison of human esophageal cancer cells treated with UJ3 and Cisplatin (Photo courtesy of Dr. Zelinda Engelbrecht, University of Johannesburg).
A team of South African cancer researchers has suggested replacing the current frontline platinum-based chemotherapeutic drugs with first generation silver(I) phosphines, which have vast structural diversity and promising anticancer activity.

Increased incidences of cancer, side-effects to chemotherapeutic agents and redevelopment of tumors due to resistance has prompted the search for alternative compounds showing anticancer activity.

A fruit of this search has been the discovery by investigators at the University of Johannesburg (South Africa) of a new family of promising silver-based anti-cancer drugs. The most promising silver thiocyanate phosphine complex among these, called UJ3, was tested in rats and in human cancer cell cultures.

Results of the study published in the April 2018 issue of the journal BioMetals revealed the effective induction of cell death by a silver(I) thiocyanate 4-methoxyphenyl phosphine complex (UJ3) in a malignant esophageal cell line. Apoptotic cell death was confirmed in treated cells. Moreover, mitochondrial targeting via the intrinsic cell death pathway was evident due to low levels of ATP, altered ROS (reactive oxygen species) activity, mitochondrial membrane depolarization, cytochrome c release, and caspase-9 cleavage.

The complex silver(I) phosphine complex displayed low cytotoxicity towards two human non-malignant, skin and kidney, cell lines.

"In rat studies, we see that up to three grams of UJ3 can be tolerated per one kilogram of bodyweight. This makes UJ3 and other silver phosphine complexes we have tested about as toxic as vitamin C," said senior author Dr. Reinout Meijboom, professor of chemistry at the University of Johannesburg. "These complexes can be synthesized with standard laboratory equipment, which shows good potential for large scale manufacture. The family of silver thiocyanate phosphine compounds is very large. We were very fortunate to test UJ3, which has an unusually "flat" chemical structure, early on in our exploration of this chemical family for cancer treatment."

Related Links:
University of Johannesburg

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.