Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Oncogene Used as Drug Transporter to Block Tumor Growth

By LabMedica International staff writers
Posted on 07 Mar 2018
Print article
Image: The 123B9 dimeric peptide (right panel) has a scorpion-like shape with two arms that bind to EphA2-expressing cancer cells and a tail (brown) comprising the cytotoxic chemotherapeutic agent paclitaxel. The compound recognizes the surface of cancer cells that are rich in EphA2 (labeled in red in the left panel) and deliver the cytotoxic agent (Photo courtesy of the Pellecchia Laboratory, University of California, Riverside).
Image: The 123B9 dimeric peptide (right panel) has a scorpion-like shape with two arms that bind to EphA2-expressing cancer cells and a tail (brown) comprising the cytotoxic chemotherapeutic agent paclitaxel. The compound recognizes the surface of cancer cells that are rich in EphA2 (labeled in red in the left panel) and deliver the cytotoxic agent (Photo courtesy of the Pellecchia Laboratory, University of California, Riverside).
A potent peptide-drug conjugate that targets the EphA2 (ephrin type-A receptor 2) oncogene was shown to reduce circulating cancer cells and metastases in breast cancer models.

EphA2 overexpression has been associated with metastasis of multiple cancer types, including melanoma, ovarian, prostate, lung, and breast cancer. Investigators at the University of California, Riverside (USA) had proposed employing chemotherapeutic peptide-drug conjugates (PDCs) using EphA2-targeting agents such as the YSA peptide or its optimized version 123B9. While their studies indicated that YSA- or 123B9-drug conjugates could selectively deliver cytotoxic drugs to cancer cells in vivo, the high concentrations of the agents that were required to bind the EphA2 receptor remained a limiting factor in developing these PDC for clinical purposes.

In overcoming these limitations, the investigators reported in the February 22, 2018, online edition of the Journal of Medicinal Chemistry that they had prepared a dimeric version of 123B9 capable of inducing receptor activation at nanomolar concentrations. In addition, they demonstrated that conjugation of dimeric 123B9 with the anticancer drug paclitaxel was very effective in targeting circulating tumor cells and inhibiting lung metastasis in breast cancer models.

"Once this novel tumor-homing agent binds to the EphA2 receptor, the oncogene functions as a cancer-specific molecular Trojan horse for paclitaxel, carrying the drug inside the cancel cell, killing the cell, and thwarting metastasis," said senior author Dr. Maurizio Pellecchia, professor of biomedical sciences at the University of California, Riverside. "Without the targeting agent, paclitaxel cannot hitch a ride on EphA2. Because this binding causes EphA2 internalization, we also sought to conjugate 123B9 with paclitaxel and thus direct the drug to migrating cancer cells."

"Our work predicts that reducing the number of circulating cancer cells produces less metastasis," said Dr. Pellecchia. "Indeed, in a second tumor model of metastatic breast cancer, we demonstrated that mice treated with the EphA2-targeting paclitaxel conjugate presented nearly no lung metastases, while a large numbers of lesions were observed in both untreated mice and in mice treated with just paclitaxel. The proof-of-concept studies we have obtained thus far are extremely encouraging, and we are confident that with proper support and efforts we could translate our findings into experimental therapeutics for a variety of solid tumors that are driven by EphA2 overexpression, including breast, lung, prostate, pancreatic and ovarian cancers."

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Benchtop Cooler
PCR-Cooler & PCR-Rack
New
Calprotectin Assay
Fecal Calprotectin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.