We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Potential Therapy Blocks Cancer Stem Cell Survival

By LabMedica International staff writers
Posted on 08 Feb 2018
Print article
Image: The structure of the cancer stem cell-promoting SOX2 protein (Photo courtesy of Wikimedia Commons).
Image: The structure of the cancer stem cell-promoting SOX2 protein (Photo courtesy of Wikimedia Commons).
A suggested new drug regimen for treating bladder cancer targets two enzymes that act to increase the expression of a third enzyme that promotes the survival and growth of a drug resistant population of cancer stem cells.

Overcoming acquired drug resistance remains a core challenge in the clinical management of human cancer, including in urothelial carcinoma of the bladder (UCB), the most common cancer of the urinary tract, which annually causes more than 100,000 deaths worldwide. Cancer stem-like cells (CSC) have been implicated in the emergence of drug resistance, but mechanisms and intervention points are not completely understood.

To fill this gap, investigators at Johns Hopkins University (Baltimore, MD, USA) examined the roles of different proteins that had already been identified as being associated with cancer stem cells: Yes-associated protein 1 (YAP1) and cyclooxygenase 2 (COX2).

The investigators worked with bladder cancer cells growing in culture and with mice that carried a human bladder cancer xenograft. They reported in the January 2, 2018, issue of the journal Cancer Research that the pro-inflammatory COX2/PGE2 (Prostaglandin E2) pathway and the YAP1 growth-regulatory pathway cooperated to recruit the stem cell factor SOX2 in expanding and sustaining the accumulation of urothelial CSCs. Mechanistically, COX2/PGE2 signaling induced promoter methylation of the let-7 microRNA precursor, resulting in its downregulation and subsequent increase in SOX2 expression. YAP1 induced SOX2 expression more directly by binding its enhancer region. In UCB clinical specimens, positive correlations in the expression of SOX2, COX2, and YAP1 were observed, with co-expression of COX2 and YAP1 being observed particularly.

Additional results suggested that activation of the COX2/PGE2 and YAP1 pathways also promoted acquired resistance to epidermal growth factor receptor (EGFR) inhibitors in basal-type UCB. In a mouse xenograft model of UCB, dual inhibition of COX2 and YAP1 elicited a long-lasting therapeutic response by limiting CSC expansion after chemotherapy and EGFR inhibition.

"Thus, targeting COX2 and YAP1 together may be indispensable for eradicating CSCs," said senior author Dr. Mohammad Hoque, associate professor of otolaryngology-head and neck surgery, urology, and oncology at Johns Hopkins University. "Targeting both proteins jointly could help improve the response of tumors to standard chemotherapy regimens and avoid chemotherapy resistance.

Because the drugs that inhibit these proteins are already FDA approved to treat other conditions, it sets the stage for an easy transition to clinical trials."

Related Links:
Johns Hopkins University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.