We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Potential Therapy Blocks Cancer Stem Cell Survival

By LabMedica International staff writers
Posted on 08 Feb 2018
A suggested new drug regimen for treating bladder cancer targets two enzymes that act to increase the expression of a third enzyme that promotes the survival and growth of a drug resistant population of cancer stem cells.

Overcoming acquired drug resistance remains a core challenge in the clinical management of human cancer, including in urothelial carcinoma of the bladder (UCB), the most common cancer of the urinary tract, which annually causes more than 100,000 deaths worldwide. More...
Cancer stem-like cells (CSC) have been implicated in the emergence of drug resistance, but mechanisms and intervention points are not completely understood.

To fill this gap, investigators at Johns Hopkins University (Baltimore, MD, USA) examined the roles of different proteins that had already been identified as being associated with cancer stem cells: Yes-associated protein 1 (YAP1) and cyclooxygenase 2 (COX2).

The investigators worked with bladder cancer cells growing in culture and with mice that carried a human bladder cancer xenograft. They reported in the January 2, 2018, issue of the journal Cancer Research that the pro-inflammatory COX2/PGE2 (Prostaglandin E2) pathway and the YAP1 growth-regulatory pathway cooperated to recruit the stem cell factor SOX2 in expanding and sustaining the accumulation of urothelial CSCs. Mechanistically, COX2/PGE2 signaling induced promoter methylation of the let-7 microRNA precursor, resulting in its downregulation and subsequent increase in SOX2 expression. YAP1 induced SOX2 expression more directly by binding its enhancer region. In UCB clinical specimens, positive correlations in the expression of SOX2, COX2, and YAP1 were observed, with co-expression of COX2 and YAP1 being observed particularly.

Additional results suggested that activation of the COX2/PGE2 and YAP1 pathways also promoted acquired resistance to epidermal growth factor receptor (EGFR) inhibitors in basal-type UCB. In a mouse xenograft model of UCB, dual inhibition of COX2 and YAP1 elicited a long-lasting therapeutic response by limiting CSC expansion after chemotherapy and EGFR inhibition.

"Thus, targeting COX2 and YAP1 together may be indispensable for eradicating CSCs," said senior author Dr. Mohammad Hoque, associate professor of otolaryngology-head and neck surgery, urology, and oncology at Johns Hopkins University. "Targeting both proteins jointly could help improve the response of tumors to standard chemotherapy regimens and avoid chemotherapy resistance.

Because the drugs that inhibit these proteins are already FDA approved to treat other conditions, it sets the stage for an easy transition to clinical trials."

Related Links:
Johns Hopkins University


Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
Collection and Transport System
PurSafe Plus®
New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: Private equity firms Blackstone and TPG have joined forces to acquire Hologic in a major healthcare deal (Photo courtesy of Hologic)

Hologic to be Acquired by Blackstone and TPG

Hologic (Marlborough, MA, USA) has entered into a definitive agreement to be acquired by funds managed by Blackstone (New York, NY, USA) and TPG (San Francisco, CA, USA) in a transaction valued at up to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.