We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Potential Therapy Blocks Cancer Stem Cell Survival

By LabMedica International staff writers
Posted on 08 Feb 2018
Print article
Image: The structure of the cancer stem cell-promoting SOX2 protein (Photo courtesy of Wikimedia Commons).
Image: The structure of the cancer stem cell-promoting SOX2 protein (Photo courtesy of Wikimedia Commons).
A suggested new drug regimen for treating bladder cancer targets two enzymes that act to increase the expression of a third enzyme that promotes the survival and growth of a drug resistant population of cancer stem cells.

Overcoming acquired drug resistance remains a core challenge in the clinical management of human cancer, including in urothelial carcinoma of the bladder (UCB), the most common cancer of the urinary tract, which annually causes more than 100,000 deaths worldwide. Cancer stem-like cells (CSC) have been implicated in the emergence of drug resistance, but mechanisms and intervention points are not completely understood.

To fill this gap, investigators at Johns Hopkins University (Baltimore, MD, USA) examined the roles of different proteins that had already been identified as being associated with cancer stem cells: Yes-associated protein 1 (YAP1) and cyclooxygenase 2 (COX2).

The investigators worked with bladder cancer cells growing in culture and with mice that carried a human bladder cancer xenograft. They reported in the January 2, 2018, issue of the journal Cancer Research that the pro-inflammatory COX2/PGE2 (Prostaglandin E2) pathway and the YAP1 growth-regulatory pathway cooperated to recruit the stem cell factor SOX2 in expanding and sustaining the accumulation of urothelial CSCs. Mechanistically, COX2/PGE2 signaling induced promoter methylation of the let-7 microRNA precursor, resulting in its downregulation and subsequent increase in SOX2 expression. YAP1 induced SOX2 expression more directly by binding its enhancer region. In UCB clinical specimens, positive correlations in the expression of SOX2, COX2, and YAP1 were observed, with co-expression of COX2 and YAP1 being observed particularly.

Additional results suggested that activation of the COX2/PGE2 and YAP1 pathways also promoted acquired resistance to epidermal growth factor receptor (EGFR) inhibitors in basal-type UCB. In a mouse xenograft model of UCB, dual inhibition of COX2 and YAP1 elicited a long-lasting therapeutic response by limiting CSC expansion after chemotherapy and EGFR inhibition.

"Thus, targeting COX2 and YAP1 together may be indispensable for eradicating CSCs," said senior author Dr. Mohammad Hoque, associate professor of otolaryngology-head and neck surgery, urology, and oncology at Johns Hopkins University. "Targeting both proteins jointly could help improve the response of tumors to standard chemotherapy regimens and avoid chemotherapy resistance.

Because the drugs that inhibit these proteins are already FDA approved to treat other conditions, it sets the stage for an easy transition to clinical trials."

Related Links:
Johns Hopkins University

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Calprotectin Assay
Fecal Calprotectin ELISA
New
Blood Gas and Chemistry Analysis System
Edan i500

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.