We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanoparticles Deliver Small RNAs to Treat Pancreatic Cancer

By LabMedica International staff writers
Posted on 06 Feb 2018
A team of Israeli cancer researchers used novel supramolecular nanocarriers to deliver a potent combination of microRNA and siRNA to attach and destroy pancreatic ductal adenocarcinoma (PDAC) tumors in a mouse model.
 
MicroRNAs (miRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. More...
Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.
 
Short interfering RNAs (siRNAs) have a well-defined structure: a short (usually 21 base pairs) double-stranded RNA (dsRNA) with phosphorylated 5' ends and hydroxylated 3' ends with two overhanging nucleotides. These small RNAs can bind to other specific messenger RNA (mRNA) molecules and either increase or decrease their activity, for example by preventing an mRNA from producing a protein. RNA interference has an important role in defending cells against parasitic nucleotide sequences – viruses and transposons – but also in directing development as well as gene expression in general.
 
Investigators at Tel Aviv University (Israel) conjugated in parallel ethylenediamine and alkylamine moieties to form positively charged amphiphilic nanocarriers. These cationic nanocarriers were designed to utilize electrostatic-based interactions to form polyplexes with the negatively charged oligonucleotide cargo. The nanocarriers would facilitate oligonucleotide delivery by improving their stability in the bloodstream and enabling accumulation of the polyplexes at the tumor site due to enhanced permeability and the retention effect.
 
Based findings gleaned from The Cancer Genome Atlas (TCGA), the investigators used two negatively charged small RNAs: miR-34a for miRNA replacement therapy and PLK1 (polo like kinase 1)-siRNA for oncogene silencing in a PDAC mouse model.
 
They reported in the January 2, 2018, online edition of the journal Nature Communications that systemic administration of the RNA polyplexes to PDAC-bearing mice showed no toxicity and accumulated at the tumor, resulting in an enhanced antitumor effect due to inhibition of the MYC oncogene, a common target of both miR-34a and PLK1.
 
"Though 75% of pancreatic cancer patients die within 12 months of diagnosis, about 7% survive more than five years," said senior author Dr. Ronit Satchi-Fainaro, professor of physiology and pharmacology at Tel Aviv University. "We thought that if we could understand how some people live several years with this most aggressive disease, we might be able to develop a new therapeutic strategy. This treatment takes into account the entire genomic pattern, and shows that affecting a single gene is not enough for the treatment of pancreatic cancer or any cancer type in general."
 

New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Collection and Transport System
PurSafe Plus®
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: Private equity firms Blackstone and TPG have joined forces to acquire Hologic in a major healthcare deal (Photo courtesy of Hologic)

Hologic to be Acquired by Blackstone and TPG

Hologic (Marlborough, MA, USA) has entered into a definitive agreement to be acquired by funds managed by Blackstone (New York, NY, USA) and TPG (San Francisco, CA, USA) in a transaction valued at up to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.