We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mutations Force Proteins to Adopt Solid-like Structures

By LabMedica International staff writers
Posted on 31 Jan 2018
Print article
Image: The hnRNPA2 protein forms liquid droplets in a test tube as seen by light microscopy. These structures allow researchers to examine how disease mutations and functional modifications change the behavior of the proteins with atomistic detail (Photo courtesy of Veronica Ryan, Brown University).
Image: The hnRNPA2 protein forms liquid droplets in a test tube as seen by light microscopy. These structures allow researchers to examine how disease mutations and functional modifications change the behavior of the proteins with atomistic detail (Photo courtesy of Veronica Ryan, Brown University).
A recently published paper provided a unified structural view of self-assembly, aggregation, and interactions of the hnRNPA2 protein and the distinct effects of small chemical changes such as disease mutations and arginine methylation on these assemblies.

The hnRNPA2 protein is a component of RNA-processing organelles that lack membranes. This protein forms inclusions when mutated in a syndrome characterized by the degeneration of neurons (bearing features of amyotrophic lateral sclerosis [ALS] and frontotemporal dementia), muscle, and bone.

In the January 18, 2018, online edition of the journal Molecular Cell investigators at Brown University (Providence, RI, USA) used nuclear magnetic resonance (NMR) spectroscopy, computer simulations, and microscopy to show how mutations and arginine methylation, a functional modification common to a large family of proteins with low-complexity domains, altered the formation low-complexity protein liquid droplets and their conversion to solid-like states in disease situations.

"We show how small chemical changes - involving only a few atoms - lead to big changes in assembly and disease-associated aggregation," said senior author Dr. Nicolas Fawzi, assistant professor of molecular pharmacology, physiology, and biotechnology at Brown University.

"These interactions are more dynamic and less specific than previously thought. A molecule does not take just one shape and bind to one shape but a molecule is flexible and interacts in flexible ways. Because these low-complexity domains are too flexible to be directly targeted by standard drugs, finding out how cells use and tame these domains is a potential route to stopping their unwanted assembly in disease."

Related Links:
Brown University

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HbA1c Test
HbA1c Rapid Test
New
Unstirred Waterbath
HumAqua 5

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.