We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Mutations Force Proteins to Adopt Solid-like Structures

By LabMedica International staff writers
Posted on 31 Jan 2018
Print article
Image: The hnRNPA2 protein forms liquid droplets in a test tube as seen by light microscopy. These structures allow researchers to examine how disease mutations and functional modifications change the behavior of the proteins with atomistic detail (Photo courtesy of Veronica Ryan, Brown University).
Image: The hnRNPA2 protein forms liquid droplets in a test tube as seen by light microscopy. These structures allow researchers to examine how disease mutations and functional modifications change the behavior of the proteins with atomistic detail (Photo courtesy of Veronica Ryan, Brown University).
A recently published paper provided a unified structural view of self-assembly, aggregation, and interactions of the hnRNPA2 protein and the distinct effects of small chemical changes such as disease mutations and arginine methylation on these assemblies.

The hnRNPA2 protein is a component of RNA-processing organelles that lack membranes. This protein forms inclusions when mutated in a syndrome characterized by the degeneration of neurons (bearing features of amyotrophic lateral sclerosis [ALS] and frontotemporal dementia), muscle, and bone.

In the January 18, 2018, online edition of the journal Molecular Cell investigators at Brown University (Providence, RI, USA) used nuclear magnetic resonance (NMR) spectroscopy, computer simulations, and microscopy to show how mutations and arginine methylation, a functional modification common to a large family of proteins with low-complexity domains, altered the formation low-complexity protein liquid droplets and their conversion to solid-like states in disease situations.

"We show how small chemical changes - involving only a few atoms - lead to big changes in assembly and disease-associated aggregation," said senior author Dr. Nicolas Fawzi, assistant professor of molecular pharmacology, physiology, and biotechnology at Brown University.

"These interactions are more dynamic and less specific than previously thought. A molecule does not take just one shape and bind to one shape but a molecule is flexible and interacts in flexible ways. Because these low-complexity domains are too flexible to be directly targeted by standard drugs, finding out how cells use and tame these domains is a potential route to stopping their unwanted assembly in disease."

Related Links:
Brown University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.