We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Removable Device Developed for Treatment of Type I Diabetes

By LabMedica International staff writers
Posted on 18 Jan 2018
Print article
Image: An illustration of TRAFFIC (Thread-Reinforced Alginate Fiber for Islets enCapsulation), a novel removable implant device for control of type I diabetes (Photo courtesy of Cornell University).
Image: An illustration of TRAFFIC (Thread-Reinforced Alginate Fiber for Islets enCapsulation), a novel removable implant device for control of type I diabetes (Photo courtesy of Cornell University).
A team of biomedical engineers has devised a novel technique for implantation and removal of living pancreatic beta cells in order to control insulin levels in patients with type I diabetes.

Cell encapsulation has been shown to hold promise for effective, long-term treatment of type I diabetes. However, various obstacles have delayed the adaptation of this approach for clinical applications. For example, there is an unmet need for an encapsulation system that is capable of delivering sufficient cell mass while still allowing convenient retrieval or replacement.

To fill this gap, investigators at Cornell University (Ithaca, NY, USA) developed a simple cell encapsulation system that is readily scalable and conveniently retrievable. The key to this design was to engineer a highly wettable, Ca2+-releasing nanoporous polymer thread that promoted uniform in situ cross-linking and strong adhesion of a thin layer of alginate hydrogel around the thread. This method – named TRAFFIC (Thread-Reinforced Alginate Fiber for Islets enCapsulation) by the investigators - was used to implant hundreds of thousands of islet cells into animal diabetes models. The cells were protected by a thin hydrogel coating and the coated cells were attached to a polymer thread that could be removed or replaced easily when the cells had outlived their usefulness.

Results published in the December 26, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences revealed that the device provided immunoprotection of rat islets in immunocompetent C57BL/6 mice in a short-term (one-month) study, similar to neat alginate fibers. However, the mechanical property of the device, critical for handling and retrieval, was much more robust than the neat alginate fibers due to the reinforcement of the central thread. It also had facile mass transfer due to the short diffusion distance.

The investigators demonstrated the therapeutic potential of the device through the correction of chemically induced diabetes in C57BL/6 mice using rat islets for three months as well as in immunodeficient SCID-Beige mice using human islets for four months. They further showed, as a proof of concept, the scalability and retrievability of the device in dogs. After one month of implantation in dogs, the device could be rapidly retrieved through a minimally invasive laparoscopic procedure.

"The ability to remove the transplant is key because of its potential to form tumors," said senior author Dr. Minglin Ma, assistant professor biological and environmental engineering at Cornell University. "When they fail or die, they need to come out. You do not want to put something in the body that you cannot take out. With our method, that is not a problem."

Related Links:
Cornell University

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test
New
PSA Test
Humasis PSA Card

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.