We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Macrophage Nanoparticles Created as Sepsis Treatment

By LabMedica International staff writers
Posted on 16 Jan 2018
A novel approach for treating sepsis is based on nanoparticles (so-called nanosponges) coated with cell membranes isolated from immune macrophages.

Sepsis is a life-threatening condition that arises when the body's response to infection causes injury to its own tissues and organs. More...
Sepsis is caused by an immune response triggered by an infection. Most commonly, the infection is bacterial, but it may also be from fungi, viruses, or parasites. Common locations for the primary infection include lungs, brain, urinary tract, skin, and abdominal organs.

Currently, there are no effective clinically available sepsis treatments, and care remains primarily supportive. In an effort to develop an effective sepsis treatment, investigators at the University of California, San Diego (USA) fabricated a novel type of macrophage biomimetic nanoparticle or nanosponge. The nanoparticles, made by wrapping polymeric cores with cell membrane derived from macrophages, possessed an antigenic exterior the same as the source cells.

The investigators reported in the October 24, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that by acting as macrophage decoys, these nanoparticles bound and neutralized endotoxins that would otherwise have triggered immune activation. In addition, these macrophage-like nanoparticles sequestered proinflammatory cytokines and inhibited their ability to potentiate the sepsis cascade.

In a mouse Escherichia coli bacteremia model, treatment with macrophage mimicking nanoparticles, termed M-Phi-NPs, reduced proinflammatory cytokine levels, inhibited bacterial dissemination, and ultimately conferred a significant survival advantage to infected mice.

"A wide range of endotoxins and pro-inflammatory cytokines naturally bind to macrophage cell membranes, so these nanosponges serve as universal traps for a broad spectrum of sepsis-causing molecules," said senior author Dr. Liangfang Zhang, professor of nanoengineering at the University of California, San Diego. "They can work across different bacterial genus, species and strains, and since they are covered in actual macrophage cell membranes, they can pass as the body's own immune cells and circulate the bloodstream without being evicted."

Related Links:
University of California, San Diego


New
Gold Member
Collection and Transport System
PurSafe Plus®
Collection and Transport System
PurSafe Plus®
New
Rapid Molecular Testing Device
FlashDetect Flash10
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AiPlex VAS for the MosaiQ platform is designed to help reduce time-to-diagnosis for patients with autoimmune vasculitis (Photo courtesy of AliveDx)

Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis

Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.