We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Method Enables Generation of Thyroid Tissue from Mouse Stem Cells

By LabMedica International staff writers
Posted on 24 Feb 2017
A novel method for generating thyroid cells (thyrocytes) from embryonic stem cells was demonstrated in a mouse model.

The dysfunctional thyroid gland can lead to severe disease such as Grave's disease or Hashimoto's disease, which can result in hyper or hypothyroidism, thyroid nodules, goiter, or cancer. More...
The development of a method to generate thyrocytes from stem cells is of importance for studying the thyroid gland and possibly as a mechanism to repair it.

Investigators at Boston University Medical Center worked with genetically modified mouse embryonic stem cell to search for a new efficient way to generate thyrocytes. Towards this end, they engineered mouse embryonic stem cells to express a genetic switch for the NKX2-1 (NK2 homeobox 1) gene. Then, they coached the embryonic stem cells through various stages while switching NKX2-1 on and off for short periods of time.

Describing the study in the February 2, 2017, online edition of the journal Stem Cell Reports, the investigators reported that they had identified the transient overexpression of the transcription factor NKX2-1 as a powerful inductive signal for the robust derivation of thyrocyte-like cells from mouse pluripotent stem cell-derived anterior foregut endoderm (AFE). This thyroid conversion effect pertained only to a narrow developmental window of competence contingent on several parameters, including dual bone morphogenetic protein (BMP)/fibroblast growth factor (FGF) signaling and correct anterior patterning of definitive endoderm (DE). Mature cultures produced T4 hormone at levels comparable with mouse thyroid tissue.

"This method resulted in high yield of our target cell type, thyroid cells, but it may be applicable for the derivation of other clinically relevant cell types such as lung cells, insulin-producing cells, liver cells, etc.," said senior author Dr. Laertis Ikonomou, assistant professor of medicine at the Boston University Medical Center.


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chagas Disease Test
LIAISON Chagas
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: Schematic diagram of multimodal single-cell MSI using tapping-mode scanning probe electrospray ionization (Photo courtesy of Yoichi Otsuka)

New Technology Improves Understanding of Complex Biological Samples

Tissues are composed of a complex mixture of various cell types, which complicates our understanding of their biological roles and the study of diseases. Now, a multi-institutional team of researchers... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.