We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Blocking Proangiogenesis Gene Could Stop Tumor Growth

By LabMedica International staff writers
Posted on 26 Sep 2012
A recent paper described the function of the proangiogenesis gene sphingosine 1-phosphate receptor-1 (S1P1) and suggested that drugs to block activity of this gene could help control tumor growth.

The protein encoded by the S1P1 gene is structurally similar to G protein-coupled receptors and is highly expressed in endothelial cells. More...
It binds the ligand sphingosine-1-phosphate with high affinity and high specificity, and is thought to be involved in the processes that regulate the differentiation of endothelial cells. Activation of this receptor induces cell-cell adhesion.

Investigators at Weill Cornell Medical College (New York, NY, USA) have been working to define the molecular mechanisms of the angiogenic process, in which endothelial cells from preexisting blood vessels sprout, move, and then change to form new vascular channels. In the September 11, 2012, issue of the journal Developmental Cell they described a mechanism by which the G protein-coupled S1P receptor-1 (S1P1) stabilized the primary vascular network. A gradient of S1P1 expression from the mature regions of the vascular network to the growing vascular front was observed. In the absence of endothelial S1P1, adherens junctions were destabilized, barrier function was breached, and flow was perturbed, resulting in abnormal vascular hypersprouting.

Interestingly, S1P1 responded to S1P as well as laminar shear stress to transduce flow-mediated signaling in endothelial cells both in vitro and in vivo. These data demonstrated that blood flow and circulating S1P activated endothelial S1P1 to stabilize blood vessels in development and homeostasis.

"The body needs to make new blood vessels that transport oxygen and blood. We now know that VEGF (vascular endothelial growth factor) starts the process of sprouting new blood vessels from existing vessels, and S1P1 finishes it," said senior author Dr. Timothy Hla, professor of pathology and laboratory medicine at Weill Cornell Medical College. "Angiogenesis is abnormal in many diseases; by targeting both S1P1 and VEGF, it may be more effective to strike out disease than using just VEGF inhibitors alone."

"The S1P1 molecule acts like an antenna to sense blood flow. If blood flow is reduced, then normal S1P1 signaling is interrupted, destabilizing blood vessel formation, causing the endothelium to undergo an inflammatory process," said Dr. Hla. "This happens in many diseases with abnormal vessels, including rheumatoid arthritis, psoriasis, and even cancer. This research defines one of the fundamental mechanisms of blood vessel growth that is vital to normal health and that also fuels many diseases. This research could ultimately lead to our ability to better modulate blood vessel health and growth, especially in diseases that depend on extra blood to sustain them."

Related Links:

Weill Cornell Medical College




Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Serological Pipet Controller
PIPETBOY GENIUS
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
New
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.