We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Elevated WNT2 Expression Detected in Circulating Pancreatic Cancer Cells

By LabMedica International staff writers
Posted on 11 Jul 2012
Cancer researchers have detected abnormally high expression of the gene WNT2 (Wingless-type MMTV integration site family, member 2) in circulating metastatic pancreatic cancer cells from human patients and from mice genetically programmed to develop the disease.

WNT2 is a member of a gene family consisting of structurally related genes that encode secreted signaling proteins. More...
These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. Alternatively spliced transcript variants have been identified for this gene. The WNT pathway involves a large number of proteins that can regulate the production of WNT signaling molecules, their interactions with receptors on target cells and the physiological responses of target cells that result from the exposure of cells to the extracellular WNT ligands. Although the presence and strength of any given effect depends on the WNT ligand, cell type, and organism, some components of the signaling pathway are remarkably conserved in a wide variety of organisms.

Investigators at Harvard Medical School (Boston, MA; USA) developed a novel microfluidic device for efficient capture of circulating tumor cells (CTCs) from both human patients and from mice with genetically induced pancreatic cancer.

They analyzed and compared RNA expression levels in pancreatic CTCs, in primary tumor cells, and in normal pancreatic tissue. Results published in the July 1, 2012, online edition of the journal Nature revealed that WNT2 expression was significantly elevated in both CTCs and metastatic cells while WNT2-expressing cells were rare in primary tumors. Nonetheless, WNT2 expression in pancreatic tumors was higher than in normal pancreatic tissue.

Drugs known to block the activity of various members of the WNT pathway were tested to determine whether they had any effect on pancreatic tumor metastasis. Chemical inhibition of the enzyme TGF-beta activated kinase 1 (TAK1) prevented metastasis-associated activities in cultured CTCs. Blocking TAK1 expression by siRNA interference also reduced the development of metastasis in mice injected with WNT2-expressing CTCs.

“This proof of principle study is the first to show that, by studying both mouse and human pancreatic cancer cells captured with this device, we can dissect genes that are overexpressed in these cells and identify signaling pathways that allow them to survive in the bloodstream,” said senior author Dr. Daniel Haber, professor of oncology at Harvard Medical School. “We also found that targeting a key step in these pathways can reduce metastatic potential, which is critically important for control of pancreatic cancer. This study would not have been possible without a way to isolate rare CTCs from both mouse models and human patients.”

“The picture in more complicated in humans, since multiple WNTs are upregulated,” said Dr. Haber. “But the TAK1 inhibitor we tested appears to have an effect on diverse WNT pathways involved in the survival of pancreatic CTCs. We previously reported that TAK1 inhibition has promise for treating a genetically defined subset of colon cancers, and these findings now extend the relevance of the TAK1 pathway to suppression of blood-borne metastasis in pancreatic cancer. Considerable more work will be needed to fully understand the critical pathways involved, but it is our hope that TAK1 inhibitors will ultimately be developed for clinical testing.”

Related Links:
Harvard Medical School




New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Serological Pipet Controller
PIPETBOY GENIUS
New
Gold Member
Rapid AKI Test
Acute Kidney Injury (AKI) Array (4-plex)
New
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The ONC IN-CYT platform leverages cross indication biomarker cyto-signatures (Photo courtesy of OraLiva)

AI-Powered Cytology Tool Detects Early Signs of Oral Cancer

Each year, 54,000 Americans are diagnosed with oral cancer, yet only 28% of cases are identified at an early stage, when the five-year survival rate exceeds 85%. Most diagnoses occur in later stages, when... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: PD-1 protein blockade is the standard treatment for advanced melanoma among the different types of immunotherapy (Photo courtesy of 123RF)

Precision Tool Predicts Immunotherapy Treatment Failure in Melanoma Patients

Melanoma, though accounting for only about 4% of skin tumors, is the deadliest form of skin cancer due to its high potential to metastasize. While immunotherapy, especially PD-1 protein blockade, has revolutionized... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.