We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Deflector Shield Drug Strategy Fights Resistant Leukemia, Lymphoma

By LabMedica International staff writers
Posted on 19 Jun 2012
US scientists have developed an anticancer peptide therapy that overcomes the dogged resistance to chemotherapy and radiation frequently seen in certain blood cancers when the disease returns following initial treatment.

The strategy could lead to much needed new therapies to treat relapsed and refractory blood cancers, which are difficult to cure because their cells implement strong protein “deflector shields” to deactivate the cell death signals that chemotherapy compounds employed against them initially, according to the researchers.

The prototype agent, called a stapled BIM BH3 peptide, is designed to disable the cancer’s defenses by hitting a family of protein targets that regulate cell death. More...
In proof-of-concept studies in mice with transplanted, drug-resistant leukemia tumors, the compound alone inhibited cancer growth, and when paired with other drugs, showed synergistic anti-cancer activity, according to the researchers, led by Loren Walensky, MD, PhD, of Dana-Farber/Children’s Hospital Cancer Center (Boston, MA, USA).

Their study’s findings have been posted online by the Journal of Clinical Investigation. Dr. Walensky is the senior author and James LaBelle, MD, PhD, is the first author. A cell’s fate--whether and when it lives or dies--depends on a battle between “pro-death” and “anti-death” forces within the cell that serve as a check-and-balance system to maintain well-ordered growth. The system is regulated by the BCL-2 9 (B-cell lymphoma 2) family of proteins, which contains both pro-death and pro-survival members.

When cells are no longer needed or are damaged beyond repair, the body activates pro-death BCL-2 proteins to shut down mitochondria-- the power plants of the cell--resulting in a controlled cellular destruction known as apoptosis.

Many cell-killing cancer treatments work by triggering these “executioner proteins” to cause tumor cells to commit suicide in this fashion. But cancer cells can escape their death sentence-- and even become immortal--by hyper-activating the survival arm of the family; these proteins intercept the killer proteins and block their lethal mission. “When cancers recur, they activate not just one type of survival protein, but many,” explained Dr. Walensky, whose laboratory has extensively studied the cell-death system and makes compounds to manipulate it for research and therapeutic purposes. “It’s as if relapsed cancers learned from their initial exposure to chemotherapy such that when they come back, they put up a variety of formidable barriers to apoptosis. To reactivate cell death in refractory hematologic cancers, we need new pharmacologic strategies that broadly target these obstacles and substantially lower the apoptotic threshold.”

When tumors specifically rely on one or two survival proteins, treating them with selective BCL-2 inhibitors can be very effective at eradicating the cancer cells’ survival advantage. But relapsed cancers often evade such agents by deploying a battery of alternate survival proteins, so what's needed, Dr. Walensky noted, are next-generation compounds that can block a wider range of survival proteins without jeopardizing normal tissues.

In the current research, the scientists constructs a chemically-reinforced peptide containing the death-activating BH3 domain of an especially potent killer protein, BIM, which is able to tightly bind with and neutralize all of the BCL-2 family survival proteins. This “stapled” peptide, which incorporates the natural structure and properties of BIM BH3, not only disables the survival proteins, but also directly activates pro-death BCL-2 family proteins in cancer cells, making them self-destruct. Importantly, non-cancerous cells and tissues were relatively unaffected by the treatment.

“The diversity of BCL-2 family survival proteins blunts the antitumor activity of essentially all cancer treatments to some degree,” Dr. Walensky pointed out. “By using nature’s solution to broad targeting of the BCL-2 pathway with a stapled BIM BH3 peptide, our goal is to eliminate cancer's protective force field and enable the arsenal of cancer treatments to do their job.”

Related Links:

Dana-Farber/Children’s Hospital Cancer Center



New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Serological Pipet Controller
PIPETBOY GENIUS
New
Blood Glucose Test Strip
AutoSense Test
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The ONC IN-CYT platform leverages cross indication biomarker cyto-signatures (Photo courtesy of OraLiva)

AI-Powered Cytology Tool Detects Early Signs of Oral Cancer

Each year, 54,000 Americans are diagnosed with oral cancer, yet only 28% of cases are identified at an early stage, when the five-year survival rate exceeds 85%. Most diagnoses occur in later stages, when... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: PD-1 protein blockade is the standard treatment for advanced melanoma among the different types of immunotherapy (Photo courtesy of 123RF)

Precision Tool Predicts Immunotherapy Treatment Failure in Melanoma Patients

Melanoma, though accounting for only about 4% of skin tumors, is the deadliest form of skin cancer due to its high potential to metastasize. While immunotherapy, especially PD-1 protein blockade, has revolutionized... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.