We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Deflector Shield Drug Strategy Fights Resistant Leukemia, Lymphoma

By LabMedica International staff writers
Posted on 19 Jun 2012
US scientists have developed an anticancer peptide therapy that overcomes the dogged resistance to chemotherapy and radiation frequently seen in certain blood cancers when the disease returns following initial treatment.

The strategy could lead to much needed new therapies to treat relapsed and refractory blood cancers, which are difficult to cure because their cells implement strong protein “deflector shields” to deactivate the cell death signals that chemotherapy compounds employed against them initially, according to the researchers.

The prototype agent, called a stapled BIM BH3 peptide, is designed to disable the cancer’s defenses by hitting a family of protein targets that regulate cell death. More...
In proof-of-concept studies in mice with transplanted, drug-resistant leukemia tumors, the compound alone inhibited cancer growth, and when paired with other drugs, showed synergistic anti-cancer activity, according to the researchers, led by Loren Walensky, MD, PhD, of Dana-Farber/Children’s Hospital Cancer Center (Boston, MA, USA).

Their study’s findings have been posted online by the Journal of Clinical Investigation. Dr. Walensky is the senior author and James LaBelle, MD, PhD, is the first author. A cell’s fate--whether and when it lives or dies--depends on a battle between “pro-death” and “anti-death” forces within the cell that serve as a check-and-balance system to maintain well-ordered growth. The system is regulated by the BCL-2 9 (B-cell lymphoma 2) family of proteins, which contains both pro-death and pro-survival members.

When cells are no longer needed or are damaged beyond repair, the body activates pro-death BCL-2 proteins to shut down mitochondria-- the power plants of the cell--resulting in a controlled cellular destruction known as apoptosis.

Many cell-killing cancer treatments work by triggering these “executioner proteins” to cause tumor cells to commit suicide in this fashion. But cancer cells can escape their death sentence-- and even become immortal--by hyper-activating the survival arm of the family; these proteins intercept the killer proteins and block their lethal mission. “When cancers recur, they activate not just one type of survival protein, but many,” explained Dr. Walensky, whose laboratory has extensively studied the cell-death system and makes compounds to manipulate it for research and therapeutic purposes. “It’s as if relapsed cancers learned from their initial exposure to chemotherapy such that when they come back, they put up a variety of formidable barriers to apoptosis. To reactivate cell death in refractory hematologic cancers, we need new pharmacologic strategies that broadly target these obstacles and substantially lower the apoptotic threshold.”

When tumors specifically rely on one or two survival proteins, treating them with selective BCL-2 inhibitors can be very effective at eradicating the cancer cells’ survival advantage. But relapsed cancers often evade such agents by deploying a battery of alternate survival proteins, so what's needed, Dr. Walensky noted, are next-generation compounds that can block a wider range of survival proteins without jeopardizing normal tissues.

In the current research, the scientists constructs a chemically-reinforced peptide containing the death-activating BH3 domain of an especially potent killer protein, BIM, which is able to tightly bind with and neutralize all of the BCL-2 family survival proteins. This “stapled” peptide, which incorporates the natural structure and properties of BIM BH3, not only disables the survival proteins, but also directly activates pro-death BCL-2 family proteins in cancer cells, making them self-destruct. Importantly, non-cancerous cells and tissues were relatively unaffected by the treatment.

“The diversity of BCL-2 family survival proteins blunts the antitumor activity of essentially all cancer treatments to some degree,” Dr. Walensky pointed out. “By using nature’s solution to broad targeting of the BCL-2 pathway with a stapled BIM BH3 peptide, our goal is to eliminate cancer's protective force field and enable the arsenal of cancer treatments to do their job.”

Related Links:

Dana-Farber/Children’s Hospital Cancer Center



Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Serological Pipet Controller
PIPETBOY GENIUS
New
Silver Member
Luteinizing Hormone Test
Luteinizing Hormone (LH) Rapid Test
New
Hepatitis A Rapid Test
Anti-HAV IgM Rapid Test Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Non-coding RNAs CBR3-AS1 and PCA3 can be utilized as therapeutic targets and prognostic biomarkers in gastric cancer (Photo courtesy of Adobe Stock)

Promising Molecular Markers Support Earlier Diagnosis of Gastric Cancer

Late detection continues to make gastric cancer one of the leading causes of cancer-related deaths globally. With improved early detection tools urgently needed, researchers have now identified two long... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Pathology

view channel
Image: The new technology combines a rapid hemoglobin test with a smartphone app (Photo courtesy of 123RF)

Smartphone-Based Rapid Hemoglobin Test Accurately Detects Colorectal Cancer

Despite the availability of colorectal cancer screening programs, participation remains low, especially for fecal immunochemical tests (FIT), a non-invasive method to detect hidden blood in the stool.... Read more

Technology

view channel
Image: The machine learning-based method delivers near-perfect survival estimates for PAC patients (Photo courtesy of Shutterstock)

AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. With more than 3.3 million men in the United States diagnosed... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.