We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Synthetic Platelets Could Eventually Be Used For Biomedical Applications

By LabMedica International staff writers
Posted on 07 Jun 2012
Print article
Image: Diagram, an artist's rendering of artificial platelets and artificial red blood cells alongside their natural counterparts (Photo courtesy of Peter Allen).
Image: Diagram, an artist's rendering of artificial platelets and artificial red blood cells alongside their natural counterparts (Photo courtesy of Peter Allen).
Scientists have succeeded in making synthetic platelets, which after optimization and exhaustive testing, could be suitable for a number of biomedical applications

At University of California (UC) Santa Barbara (USA) scientists used a polymeric template––a core upon which layers of proteins and polyelectrolytes were deposited, layered, and crosslinked to create a stable synthetic platelet-shaped particle. The rigid polymeric core was then dissolved to give the particle the desired flexibility. The particle was then coated with proteins found on the surface of activated natural platelets or damaged blood vessels, a procedure performed by the researchers at Scripps Research Institute (Scripps Research Institute (La Jolla, CA, USA). Scientists at Sanford-Burnham Institute (La Jolla, CA, USA) collaborated in the project.

Smaller than red blood cells, platelets are flexible, disk-shaped cells that are 2-4 µm in size. They are the components of blood that allow it to prevent excessive bleeding and to heal wounds. The synthetic platelets can be used not only to perform the typical functions of human platelets. They may also be used to carry imaging agents to identify damaged blood vessels or to deliver drugs that dissolve blood clots.

The synthetic platelets represent one of the most advanced efforts over the last century to mimic platelet function. While clotting factors and platelets from outside donors are used widely to halt bleeding, immune system responses and thrombosis have been issues.

The development is a significant milestone in the field of biomimetic materials," said Samir Mitragotri, professor of chemical engineering, director of UC Santa Barbara's Center for Bioengineering, and an author of a paper published in the journal Advanced Materials on May 29, 2012. "By capitalizing on our capabilities in engineering materials, […] our synthetic platelets combine unique physical and biological attributes that mimic natural platelets."

Related Links:

University of California, Santa Barbara
Scripps Research Institute
Sanford-Burnham Institute



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.