We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Apolipoprotein A-IV Stabilizes Glucose Metabolism in Diabetic Mouse Model

By LabMedica International staff writers
Posted on 04 Jun 2012
Apolipoprotein A-IV (apoA-IV), a protein manufactured by the small intestine during the digestive process, has been found to improve the ability of diabetic mice to control their glucose levels.

Investigators at the University of Cincinnati (OH, USA) worked with cultures of isolated pancreatic cells, with mice that had been genetically engineered to lack the gene for apoA-IV, and with KKAy diabetic mice.

They reported in the May 22, 2012, online edition of the journal Proceedings of the National Academy of Sciences of the USA that apoA-IV-treated isolated pancreatic islets had enhanced insulin secretion under conditions of high glucose but not of low glucose, suggesting a direct effect of apoA-IV to enhance glucose-stimulated insulin release. More...
This enhancement involved cAMP (3'-5'-cyclic adenosine monophosphate) at a location distant from the point entry of calcium ions into insulin-producing beta cells.

Genetically engineered “knockout” of apoA-IV resulted in compromised insulin secretion and impaired glucose tolerance compared with wild type mice. Challenging mice lacking apoAI-V with a high-fat diet led to fasting hyperglycemia and more severe glucose intolerance associated with defective insulin secretion than occurred in wild type mice. Administration of exogenous apoA-IV to the “knockout” mice improved glucose tolerance by enhancing insulin secretion in mice fed either chow or a high-fat diet.

Injection of exogenous apoA-IV decreased blood glucose levels and stimulated a transient increase in insulin secretion in KKAy diabetic mice.

Senior author Dr. Patrick Tso, professor of pathology and laboratory medicine at the University of Cincinnati, said, “ApoA-IV behaves similar to an incretin - a gastrointestinal hormone causing an increased release of insulin after eating to combat the onset of elevated blood glucose. Two well-known incretins that have been used in the development of existing diabetes medications include gastric inhibitory peptide (GIP) and glucagon-like peptide-1 (GLP-1).”

"The problem with both of these incretins is that they are short-lived - lasting only for minutes - and are quickly inactivated by an enzyme,” said Dr. Tso. “They have also been linked to hypoglycemia, or low blood sugar, when administered when the body has a low glucose concentration. The challenge is to find something safer with a longer half-life.”

With its long (seven to eight hour) half-life apoA-IV may be a suitable therapeutic target for the regulation of glucose-stimulated insulin secretion and treatment of diabetes.

Related Links:
University of Cincinnati



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Gel Cards
DG Gel Cards
New
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The ONC IN-CYT platform leverages cross indication biomarker cyto-signatures (Photo courtesy of OraLiva)

AI-Powered Cytology Tool Detects Early Signs of Oral Cancer

Each year, 54,000 Americans are diagnosed with oral cancer, yet only 28% of cases are identified at an early stage, when the five-year survival rate exceeds 85%. Most diagnoses occur in later stages, when... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: PD-1 protein blockade is the standard treatment for advanced melanoma among the different types of immunotherapy (Photo courtesy of 123RF)

Precision Tool Predicts Immunotherapy Treatment Failure in Melanoma Patients

Melanoma, though accounting for only about 4% of skin tumors, is the deadliest form of skin cancer due to its high potential to metastasize. While immunotherapy, especially PD-1 protein blockade, has revolutionized... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.