We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanotechnology Yields 5,000-Year-Old Red Blood Cells from Glacier Mummy

By LabMedica International staff writers
Posted on 16 May 2012
Using nanotechnology, Italian and German researchers have succeeded in locating red blood cells in the wounds a 5,000-year-old iceman mummy. More...


Samples from a 5,000-year-old mummy’s stomach and intestines have allowed scientists to reconstruct his very last meal, and his DNA has been decoded. The conditions surrounding his violent death appear to have been clarified. However, what had, at least up to now, eluded the scientists, was finding any traces of blood in Ötzi, the 5,000-year-old glacier mummy.

Examination of his aorta had yielded no results. Yet recently, a team of scientists from Italy and Germany, employing nanotechnology, succeeded in locating red blood cells in Ötzi’s wounds, thereby discovering the oldest traces of blood to have been found anywhere in the world.

“Up to now there had been uncertainty about how long blood could survive--let alone what human blood cells from the Chalcolithic period, the Copper Stone Age, might look like,” Dr. Albert Zink, head of the Institute for Mummies and the Iceman at the European Academy, Bozen-Bolzano (EURAC), explained the beginning of the study that he conducted with Drs. Marek Janko and Robert Stark, materials scientists at the Center of Smart Interfaces at Darmstadt Technical University (Germany). Even in the latest forensic technologye it has so far been almost impossible to determine how long a trace of blood had been present at a crime scene. Scientists Drs. Albert Zink, Marek Janko, and Robert Stark are assured that the nanotechnologic technology that they utilized out on Ötzi’s blood to analyze the microstructure of blood cells and miniscule blood clots might possibly lead to a break-through in this field.

The investigators used an atomic force microscope to examine thin tissue sections from the wound where the arrow entered Ötzi’s back and from the laceration on his right hand. This nanotechnology instrument scans the surface of the tissue sections using a very fine probe. As the probe moves over the surface, sensors measure every miniscule deflection of the probe, point by point and line by line, building up a three-dimensional (3D) image of the surface. What emerged was an image of red blood cells with the classic “doughnut shape,” precisely as is found in healthy people today.

“To be absolutely sure that we were not dealing with pollen, bacteria, or even a negative imprint of a blood cell, but indeed with actual blood cells, we used a second analytical method, the so-called Raman spectroscopy method,” reported Drs. Janko and Stark, who, with Dr. Zink, are also members of the Center for NanoSciences (Munich, Germany). In Raman spectroscopy, the tissue sample is lit by a laser beam and analysis of the spectrum of the scattered light allows the user to identify various molecules. According to the scientists, the images resulting from this process corresponded to present-day samples of human blood.
While examining the wound at the point where the arrow entered the body, scientists also identified fibrin, a protein involved in the clotting of blood. “Because fibrin is present in fresh wounds and then degrades, the theory that Ötzi died some days after he had been injured by the arrow, as had once been mooted, can no longer be upheld,” explained Dr. Albert Zink.

The scientists published their research findings online before print May 2, 2012, in the Journal of the Royal Society Interface.

Related Links:
Darmstadt Technical University




New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
Automated Biochemical Analyzer
iBC 900
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The ONC IN-CYT platform leverages cross indication biomarker cyto-signatures (Photo courtesy of OraLiva)

AI-Powered Cytology Tool Detects Early Signs of Oral Cancer

Each year, 54,000 Americans are diagnosed with oral cancer, yet only 28% of cases are identified at an early stage, when the five-year survival rate exceeds 85%. Most diagnoses occur in later stages, when... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: PD-1 protein blockade is the standard treatment for advanced melanoma among the different types of immunotherapy (Photo courtesy of 123RF)

Precision Tool Predicts Immunotherapy Treatment Failure in Melanoma Patients

Melanoma, though accounting for only about 4% of skin tumors, is the deadliest form of skin cancer due to its high potential to metastasize. While immunotherapy, especially PD-1 protein blockade, has revolutionized... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.