Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Molecular Biologists Define a New Role for Oxysterol Binding Proteins

By LabMedica International staff writers
Posted on 08 May 2012
A recent paper discussed the role of a specialized type of lipid transfer protein and put forward the suggestion that these proteins have little to do with intracellular cholesterol transport but instead are critically involved in the processes of membrane assembly and lipid signaling.

Oxysterols are usually defined as oxygenated derivatives of cholesterol, though plant sterols can also be oxidized, and they are important as short-lived intermediates or end products in the catabolism or excretion of cholesterol. More...
They are normally present in biological membranes and lipoproteins at trace levels only, though they can exert profound biological effects at these concentrations. However, they are always accompanied by a great excess of cholesterol.

Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large gene family that differentially localize to the membranes of cellular organelles, reflecting a functional role in sterol signaling and/or transport. OSBP activity is divided between the endoplasmic reticulum (ER) and Golgi apparatus where it imparts sterol-dependent regulation of ceramide transport and sphingomyelin synthesis.

Investigators at Simon Fraser University (Burnaby, BC, Canada) worked with the ORPs encoded by the yeast OSH gene family (OSH1–OSH7) as a model system for intracellular lipid transport. These proteins are known to transfer oxysterols in the cell, but their role in cholesterol metabolism had not been defined.

In a paper published in the March 30, 2012, issue of the Journal of Biological Chemistry the investigators revisited the proposal that Osh proteins are sterol transfer proteins and presented new models consistent with known Osh protein functions. These models focused on the role of Osh proteins as sterol-dependent regulators of phosphoinositide and sphingolipid pathways. In contrast to their posited role as nonvesicular sterol-transfer proteins, they proposed that Osh proteins coordinated lipid signaling and membrane reorganization with the assembly of tethering complexes to promote molecular exchanges at membrane contact sites.

The investigators found that cholesterol binding interfered with ORPs' ability to bind to phosphatidylinositol 4-phosphate (PI4P), which is a precursor of phosphatidylinositol (4, 5)-bisphosphate. PI4P is prevalent in the membrane of the Golgi apparatus and is important for cell growth.

“The assumption was that ORPs bind and transport cholesterol inside cells in a similar fashion to how lipoproteins bind and move around the fat outside cells through the blood stream,” said first author Dr. Chris Beh, associate professor of molecular biology and biochemistry at Simon Frazer University. "Our findings told us that ORPs probably have nothing to do with moving around cholesterol within cells. Rather cholesterol binding puts the brakes on ORP's ability to bind to PI4P, which, if left unchecked, could accelerate cell growth like crazy. Given that uncontrolled cell growth is a key feature of cancer, this means gaining a better understanding of the true purpose of cholesterol-binding within cells could be important in cancer treatment.”

Related Links:

Simon Fraser University



New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Laboratory Software
ArtelWare
New
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The ONC IN-CYT platform leverages cross indication biomarker cyto-signatures (Photo courtesy of OraLiva)

AI-Powered Cytology Tool Detects Early Signs of Oral Cancer

Each year, 54,000 Americans are diagnosed with oral cancer, yet only 28% of cases are identified at an early stage, when the five-year survival rate exceeds 85%. Most diagnoses occur in later stages, when... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: PD-1 protein blockade is the standard treatment for advanced melanoma among the different types of immunotherapy (Photo courtesy of 123RF)

Precision Tool Predicts Immunotherapy Treatment Failure in Melanoma Patients

Melanoma, though accounting for only about 4% of skin tumors, is the deadliest form of skin cancer due to its high potential to metastasize. While immunotherapy, especially PD-1 protein blockade, has revolutionized... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.