We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Underlying Mechanism Identified for Prostate Cancer Caused by Cadmium

By LabMedica International staff writers
Posted on 18 Apr 2012
The widespread, extremely toxic heavy metal cadmium, classified as a Group 1 human carcinogen by the International Agency for Research on Cancer and the US National Toxicology Program, has now been shown to induce apoptosis resistance related to carcinogenesis in human prostrate cells. More...


An established lung carcinogen in humans, cadmium has also been suspected of playing a role in the induction and the development of prostate cancer, one of the most commonly diagnosed cancers in men. Though multiple molecular targets have been identified, which suggests that more than a single pathway may be involved, specific molecular events of the underlying mechanism(s) have remained elusive. It has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. In the present study, published online March 20, 2012, in the journal PLoS ONE, scientists investigated cultured cells derived from human prostate epithelium for effects of cadmium exposure on apoptosis and on the expression of some tumor suppressor proteins.

Initially, the normal RWPE-1 cell line was tested and compared with the response of its cadmium-transformed derivative CTPE. Subsequently, different prostate cancer cell lines were analyzed, including primary adenocarcinoma (22Rv1 and CWR-R1) and metastatic adenocarcinoma cells (LNCaP, PC-3, and DU145). Cells were treated for 24 hours with different concentrations of CdCl(2) , upon which apoptosis, cell cycle distribution, and expression of tumor suppressor proteins were analyzed. Concentrations relevant to human exposure were used: cadmium concentrations (10-30 µM) that are within the range that have been found in normal, hypertrophic, and malignant human prostate tissues and that, at the same time, are able to trigger apoptosis in cell culture systems.

Cellular response to cadmium was also evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. These and additional data showed that p53 silencing was able to suppress cadmium-induced apoptosis. The results demonstrated that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis.

“In our study, we investigated the effects of cadmium exposure in normal and in tumor cells derived from human prostate tissue,” said Dr. Pier Paolo Claudio, lead scientist of the study and associate professor in the Biomedical Sciences Graduate Program and Department of Biochemistry and Microbiology in the Joan C. Edwards School of Medicine at Marshall University (Huntington, WV, USA). “The focus of work in our laboratory is to understand the molecular mechanisms governing malignant transformation in order to tailor novel therapeutic strategies. To effectively design novel biological drugs, a thorough understanding of the mechanism of cancer pathogenesis is required,” he added.

The authors, part of a collaborative effort between multiple institutions in Italy and the USA, noted that since the acquisition of apoptotic resistance appears to be crucial in cadmium-induced malignant transformation, further characterization of the pathways involved as well as a thorough comparative proteome analysis of the different prostate epithelial cells studied would significantly improve understanding of cadmium carcinogenesis in the prostate.

Related Links:

Marshall University




Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Laboratory Software
ArtelWare
New
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The ONC IN-CYT platform leverages cross indication biomarker cyto-signatures (Photo courtesy of OraLiva)

AI-Powered Cytology Tool Detects Early Signs of Oral Cancer

Each year, 54,000 Americans are diagnosed with oral cancer, yet only 28% of cases are identified at an early stage, when the five-year survival rate exceeds 85%. Most diagnoses occur in later stages, when... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: PD-1 protein blockade is the standard treatment for advanced melanoma among the different types of immunotherapy (Photo courtesy of 123RF)

Precision Tool Predicts Immunotherapy Treatment Failure in Melanoma Patients

Melanoma, though accounting for only about 4% of skin tumors, is the deadliest form of skin cancer due to its high potential to metastasize. While immunotherapy, especially PD-1 protein blockade, has revolutionized... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.