We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




“Live” Cyberplasm Microbot Designed for Disease Detection

By LabMedica International staff writers
Posted on 11 Apr 2012
A “living” prototype microbot is under development that could someday identify diseases in humans.

Called Cyberplasm, it will combine advanced microelectronics with latest developments in biomimicry (technology inspired by nature). More...
The goal is for Cyberplasm to have an electronic nervous system, “eye” and “nose” sensors derived from mammalian cells, as well as artificial muscles that utilize glucose as an energy source to propel it. The key purpose is to engineer and incorporate robot components that respond to light and chemicals in the same way as biologic systems. This is a totally new way of utilizing robotics technology.

Cyberplasm is being developed over the next few years as part of an international collaboration funded by the UK Engineering and Physical Sciences Research Council (EPSRC) and the US National Science Foundation (NSF; Arlington, VA, USA). The UK-based work is taking place at Newcastle University (UK). The project originated from a sandbox session on synthetic biology jointly funded by the two organizations.

Cyberplasm will be devised to mimic key functions of the sea lamprey, a creature found mostly in the Atlantic Ocean. It is believed this application will enable the microbot to be very sensitive and responsive to any environment into which it is placed. Future uses could include the ability to swim inconspicuously through the human body to detect a wide host of diseases.

The sea lamprey [Petromyzon marinus] has a very primitive nervous system, which is easier to mimic than more complicated nervous systems. This, combined with the fact that it swims, made the sea lamprey the best candidate for the scientists on which to base Cyberplasm.

Once it is developed, the Cyberplasm prototype will be less than 1-cm long. Future versions could possibly be less than 1-mm long or even constructed on a nanoscale. “Nothing matches a living creature’s natural ability to see and smell its environment and therefore to collect data on what's going on around it,” said bioengineer Dr. Daniel Frankel of Newcastle University, who is leading the UK-based work.

Cyberplasm’s sensors are being developed to respond to external stimuli by transforming them into electronic impulses that are sent to an electronic “brain” equipped with sophisticated microchips. This brain will then send electronic messages to artificial muscles instructing them how to contract and relax, enabling the robot to navigate its way safely using an undulating motion. Similarly, data on the chemical composition of the robot’s surroundings can be collected and stored via these systems for later recovery by the robot’s operators.

Cyberplasm could also represent the beginning of important advances in, for example, sophisticated prosthetics where living muscle tissue might be engineered to contract and relax in response to stimulation from light waves or electronic signals. “We’re currently developing and testing Cyberplasm’s individual components,” stated Daniel Frankel. “We hope to get to the assembly stage within a couple of years. We believe Cyberplasm could start being used in real-world situations within five years.”

The UK component of the Cyberplasm project is a three-year initiative that is receiving EPSRC funding of just over GBP 298,000. EPSRC is the main UK government agency for funding research and training in engineering and the physical sciences, investing more than GBP 800 million a year in a wide range of topics--from mathematics to materials science, and from information technology (IT) to structural engineering.

NSF is an independent US agency created by the US Congress in 1950. With an annual budget of approximately USD 6.9 billion (FY 2010), it is the funding source for about 20% of all federally-supported basic research conducted by US colleges and universities. In many fields, such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

Related Links:

UK Engineering and Physical Sciences Research Council
US National Science Foundation
Newcastle University



New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Portable Electronic Pipette
Mini 96
New
Gold Member
Collection and Transport System
PurSafe Plus®
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Urine samples can indicate lupus nephritis without the need for repeat and painful renal biopsies (Photo courtesy of Shutterstock)

Urine Test Could Replace Painful Kidney Biopsies for Lupus Patients

Lupus is an autoimmune disorder that causes the immune system to attack the body’s own tissues and organs. Among the five million people living with lupus globally, nearly half develop lupus nephritis,... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.