We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Insights Regarding the Genetic Factors that Drive Melanoma Development

By LabMedica International staff writers
Posted on 09 Jun 2016
Cancer researchers have linked both active and inactive forms of the protein ATF2 (Activating transcription factor 2) to the development and progression of malignant melanoma.

Investigators at the Sanford Burnham Prebys Medical Discovery Institute (La Jolla, CA, USA) have been studying the role of ATF2 in melanoma development for more than 20 years. More...
They have shown, for example, that in melanoma, nuclear ATF2 expression was associated with poor prognosis and metastatic burden, whereas cytoplasmic localization correlated with sensitization of melanoma to genotoxic stress and susceptibility to chemotherapy.

In their latest paper on the topic published in the May 19, 2016, online edition of the journal Cell Reports, the investigators reported finding an inactive version of AFT2 that elicited a tumor-promoting effect in a way that they had not seen previously. They had been evaluating the oncogenic potential of an inactivated form of ATF2 in mice with mutations in BRAF, a kinase that transmits signals promoting cell division that is often mutated in pigmented skin cells.

“Inactive ATF2, in mice with mutant BRAF, resulted in the formation of pigmented lesions and later, melanoma tumors,” said senior author Dr. Ze’ev Ronai, professor in the cancer center at the Sanford Burnham Prebys Medical Discovery Institute.

“What makes this discovery relevant to human melanoma is that we identified a structurally similar form of inactive ATF2 in human melanoma samples that has the same effects on cancer cells. Inactive ATF2 could be an indicator of tumor aggressiveness in patients with BRAF mutations, and maybe other types of cancer as well.”

“Unlike models with more complex genetic changes, like the inactivation of PTEN and p16 combined with BRAF mutations that result in rapid tumorigenesis (within a few weeks), the inactive ATF2 caused BRAF mutant mice to develop melanoma much slower, more similar to the timescale seen in patients,” said Dr. Ronai. “This improves our ability to monitor the development of melanoma and efficacy of possible interventions. We are now investigating why inactive ATF2 so potently promotes BRAF-mutant melanoma, and looking for other types of cancer where it acts the same way. Our findings may guide precision therapies for tumors with mutant ATF2.”

Related Links:
Sanford Burnham Prebys Medical Discovery Institute


New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Portable Electronic Pipette
Mini 96
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.