We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Hypoxia-Inducible Factors Activate Breast Cancer Metastatic Genes

By LabMedica International staff writers
Posted on 06 Jan 2014
Factors related to hypoxia, the condition of low oxygen content that characterizes the microenvironment surrounding breast tumors, have been linked to the activation of genes that encode proteins that transform benign breast cancer cells into mobile and invasive metastatic cells.

Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes in available oxygen in the cellular environment, specifically, to decreases in oxygen, or hypoxia. More...
HIFs promote the activation of genes involved in cancer initiation, progression, and metastases. Hypoxia has been shown to enhance the invasiveness and metastatic potential of tumor cells by regulating the genes involved in the breakdown of the ECM (extracellular matrix) as well as genes that control motility and adhesion of tumor cells. HIF activity is upregulated by mutated RAS, a member of the KRAS family of oncogenes, and BRAF (v-raf murine sarcoma viral oncogene homolog B1) as well as loss-of-function mutations of the PTEN gene. PTEN (phosphatase and tensin homolog), which is missing in 60%–70% of metastatic cancers in humans, is the name of a phospholipid phosphatase protein, and gene that encodes it. The PTEN gene acts as a tumor suppressor gene thanks to the role of its protein product in regulation of the cycle of cell division, preventing cells from growing and dividing too rapidly.

Investigators at Johns Hopkins University (Baltimore, MD, USA) reported in the December 9, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that HIFs triggered metastasis by increasing the activity of the proteins RhoA and ROCK1.

RhoA (Ras homolog gene family, member A) is a small GTPase protein known to regulate the actin cytoskeleton in the formation of stress fibers. This protein is essential for the signaling function of the Rho GTPase complex. Previous studies have shown that in breast cancer increased RhoA activity stimulated cancer cell invasiveness and spreading, while RhoA deficiency suppressed cancer growth and progression. Rho kinase 1 (ROCK1) is a kinase that regulates myosin light-chain activity, leading to actin-myosin contraction, which is the basis for cell movement.

The investiagors found that the RhoA-bound ROCK1 complex phosphorylated myosin light chain (MLC), which was required for actin-myosin contractility. RhoA also activated focal adhesion kinase (FAK) signaling. Increased activity of these two proteins led to cell and matrix contraction, focal adhesion formation, and motility through the phosphorylation of MLC and FAK.

“As tumor cells multiply, the interior of the tumor begins to run out of oxygen because it is not being fed by blood vessels,” said senior author Dr. Gregg Semenza, professor of medicine at Johns Hopkins University. “The lack of oxygen activates the hypoxia-inducible factors, which are master control proteins that switch on many genes that help cells adapt to the scarcity of oxygen."

“High levels of RhoA and ROCK1 were known to worsen outcomes for breast cancer patients by endowing cancer cells with the ability to move, but the trigger for their production was a mystery,” said Dr. Semenza. “We now know that the production of these proteins increases dramatically when breast cancer cells are exposed to low oxygen conditions.”

Related Links:

Johns Hopkins University



Gold Member
Troponin T QC
Troponin T Quality Control
Serological Pipet Controller
PIPETBOY GENIUS
New
Modular Hemostasis Automation Solution
CN Track
New
Clostridium Difficile Toxin A+B Combo Card Test
CerTest Clostridium Difficile Toxin A+B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The discovery of early markers for ovarian cancer that would have improved sensitivity could aid detection (Photo courtesy of Adobe Stock)

Highly Accurate Biomarkers Could Detect Ovarian Cancer Before Clinical Diagnosis

Ovarian cancer is a deadly and challenging disease, primarily because early detection is difficult. Most women (70-75%) are diagnosed only after the cancer has already spread, which significantly reduces... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.