We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Powerful New Tool Improves Tissue Cancer Analysis

By LabMedica International staff writers
Posted on 18 Jul 2025

Studying the mix of cell types in human tissue is crucial for understanding diseases like cancer, but it presents significant challenges in both accuracy and scalability. More...

The tumor microenvironment, composed of diverse cell types, shapes tumor development and impacts patient outcomes. Scientists typically use "bulk data" from tissue samples, which combines signals from many cells, to estimate cell type composition. However, these bulk data often don’t align with data from single cells, due to differences in data collection methods, a problem known as the "batch effect." This discrepancy complicates accurate analysis. Researchers have now developed a new tool that helps overcome these challenges by enabling more reliable estimation of cell type composition in tissue samples.

The tool, named OmicsTweezer, was created by researchers at the Oregon Health & Science University’s Knight Cancer Institute (Portland, OR, USA). It uses advanced machine learning, including deep learning and a method called optimal transport, to align single-cell data with bulk data in a shared digital space. This advanced approach reduces errors caused by batch effects, allowing scientists to more accurately infer the composition of cell types in tissue samples. Unlike traditional tools, which rely on simpler linear models, OmicsTweezer uses a non-linear approach to match patterns between different types of data, providing a clearer and more reliable analysis of tissue composition.

OmicsTweezer was tested using simulated datasets and real tissue samples from prostate and colon cancer patients. The tool successfully identified subtle cell subtypes and estimated changes in cell populations across patient groups. The findings, published in Cell Genomics, suggest that OmicsTweezer could help pinpoint potential therapeutic targets and guide treatment decisions by identifying which cell populations change during disease progression. The researchers now plan to continue refining this tool and its applications to improve cancer research and precision oncology treatments in clinical settings.

“With this tool, we can now estimate the fractions of those populations defined by single-cell data in bulk data from patient groups,” said Zheng Xia, Ph.D., associate professor of biomedical engineering at the OHSU School of Medicine and senior author of the study. “That could help us understand which cell populations are changing during disease progression and guide treatment decisions.”

Related Links:
OSHU's Knight Cancer Institute


Gold Member
Automated MALDI-TOF MS System
EXS 3000
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The blood-based DNA methylation test predicts lymph node metastasis in early-stage gastric cancer (Photo courtesy of Institute of Science Tokyo)

Blood Test to Help Low-Risk Gastric Cancer Patients Avoid Unnecessary Surgery

Accurately identifying lymph node metastasis in early-stage gastric cancer remains a major clinical challenge. CT imaging often misses up to half of lymph node–positive cases, leading clinicians to recommend... Read more

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.