Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New AI-Based Method Effectively Identifies Disease Phenotypes Using Light-Based Imaging

By LabMedica International staff writers
Posted on 15 Jul 2025

Precision medicine, where treatment strategies are tailored to a patient's unique disease characteristics, holds great promise for cancer therapy. More...

However, identifying disease phenotypes, which are critical for choosing the most effective treatments, remains a significant challenge. Current methods to identify these phenotypes often require expensive tests, including molecular markers, special stains on tissue samples, or genetic sequencing, which are not always accessible to all patients. This lack of affordable and efficient tools limits the potential benefits of precision medicine for many. Now, researchers have developed a faster and more cost-effective method to identify disease phenotypes in pancreatic cancer.

The new method for disease phenotyping was developed by researchers at the University of Arizona (Tucson, AZ, USA) using label-free optical microscopy and artificial intelligence (AI). The team employed spatial transcriptomics technology to generate spatial maps of gene expression in tissue, helping to understand the disease's behavior. The researchers then used label-free optical microscopy to capture images based on natural fluorescence and second harmonic generation, which is produced by structural proteins like collagen. These images were co-aligned with spatial transcriptomic data to create a comprehensive view of the tissue's phenotype. An AI algorithm, specifically a deep neural network, was trained to predict the tissue's phenotype based solely on these optical images, demonstrating the feasibility of AI-based methods for disease phenotyping.

The new method was able to predict tissue phenotypes with nearly 90% accuracy, marking a significant step forward in applying AI to precision medicine. The research also highlighted that classical image analysis methods were insufficient for predicting phenotypes, underlining the importance of AI-based approaches in linking optical images to disease mechanisms. The findings, published in Biophotonics Discovery, suggest that this method could potentially replace expensive and complex tests with simple light-based imaging and AI analysis. This breakthrough could make precision medicine more accessible and effective in the future. The researchers plan to continue refining this method and explore its broader applications across various types of cancer and other diseases.


New
Gold Member
Hybrid Pipette
SWITCH
Collection and Transport System
PurSafe Plus®
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Urine samples can indicate lupus nephritis without the need for repeat and painful renal biopsies (Photo courtesy of Shutterstock)

Urine Test Could Replace Painful Kidney Biopsies for Lupus Patients

Lupus is an autoimmune disorder that causes the immune system to attack the body’s own tissues and organs. Among the five million people living with lupus globally, nearly half develop lupus nephritis,... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.