We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Light Shed on Differential Effectiveness of Aminoglycosides Against Parasitic Protozoa

By LabMedica International staff writers
Posted on 20 Aug 2013
Previously unknown factors have now been identified as important in the differential effectiveness of various aminoglycosides in being used or developed to treat leishmaniasis, with similar implications for treating human diseases caused by other parasitic protozoa.

Aminoglycosides (AGs) are well known as highly potent, broad-spectrum antibiotics and have been extensively investigated as such. More...
The homologous site of AG action (known to be or putatively the decoding “ribosomal A site”) in eukaryotes highlights the potential of some AGs for treating relevant human genetic disorders as well as parasitic infections caused by lower eukaryotes, such as in leishmaniasis, trypanosomiasis, giardiasis, and amoebiasis. However, too few studies have been done to characterize AG activity in eukaryotes.

The new findings, from the laboratories of Prof. Timor Baasov and Prof. Noam Adir of the Technion – Israel Institute of Technology (Haifa, Israel), Prof. Charles Jaffe of the Hebrew University (Jerusalem, Israel), and Assistant Prof. Jiro Kondo of Sophia University (Tokyo, Japan), examined the molecular mechanism as well as inhibition activity of AGs in Leishmania as a model organism for eukaryotes in general and for parasitic protozoa in particular. Some AGs have recently been clinically approved and are currently used worldwide for the treatment of leishmaniasis, such as geneticin and, particularly, paromomycin, to which parasite resistance is also on the rise.

Five AGs were chosen for comparison in terms of the anti-leishmanial activity part of the study, performed with a growth-inhibition assay (LC50) on Leishmania promastigotes in culture: paromomycin and neomycin B of one class, gentamicin and geneticin of another class, and apramycin of another. Two Leishmania species were used for these susceptibility assays – L. major, causing cutaneous disease, and L. donovani, causing fatal visceral disease if not diagnosed and treated in time. Two AGs were chosen for comparison in terms of the structural mechanism part of the study, performed with X-ray crystallography based modeling: geneticin (also known as G418) due to its high potency for the treatment of leishmaniasis, and apramycin due to its lack of anti-leishmanial activity yet being a strong binder of the leishmanial ribosome. The crystal structures were made of the AGs bound to rRNA duplex constructs mimicking their putative leishmanial binding site.

Analyses of the combined structural and physiological data provide important new insight into the anti-leishmanial activities, or lack thereof, of certain AG structural derivatives. The physiological, parasite susceptibility data indicate, for example, that geneticin is more potent than paromomycin, which is more potent than gentamicin and neomycin. This is in agreement with previous work reporting, for example, lower treatment potency of neomycin compared with paromomycin. Notably, the AGs were more effective against L. major growth than L. donovani, which might be due to species differences that affect AG permeability. Apramycin did not appear here to inhibit growth. The structural data indicate, for example among several, that ability of an AG (here, geneticin) to induce the ON-state conformation is highly important for its observed potency as an anti-Leishmania agent, thus implying the significance of translatory miscoding events in the killing mechanism.

The study was published in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) online, ahead of print, July 29, 2013.

Related Links:
Technion – Israel Institute of Technology
Hebrew University of Jerusalem
Sophia University


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Gel Cards
DG Gel Cards
New
Silver Member
Quality Control Material
Multichem ID-B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.