We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Brain Cancer Patient’s Own Immune Cells May Suppress Viral Therapy

By LabMedica International staff writers
Posted on 03 Dec 2012
Clinicians are now employing cancer-killing viruses to treat some patients with deadly, fast-growing brain tumors. More...
Clinical trials have demonstrated that these therapeutic viruses are safe but less effective than once thought.

A new study led by researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James; Columbus, USA) revealed that the reason for this is partly caused by the patient’s own immune system, which quickly works to eliminate the anticancer virus.

The findings, published November 25, 2012, in the journal Nature Medicine, demonstrate that the body responds to the anticancer virus the same as it does to an infection. Within hours, specialized immune cells called natural killer (NK) cells move in to eliminate the therapeutic virus in the brain.

The researchers discovered that the NK cells attack the viruses when they express specific molecules on their surface called NKp30 and NKp46. “These receptor molecules enable the NK cells to recognize and destroy the anticancer viruses before the viruses can destroy the tumor,” stated cosenior author Dr. Michael A. Caligiuri, director of Ohio State’s Comprehensive Cancer Center and CEO of the James Cancer Hospital and Solove Research Institute, and a senior author of the study. “When we blocked those receptors, the virus has more time to work, and mice with these brain tumors live longer. The next step is to block these molecules on NK cells in glioblastoma patients and see if we can improve their outcome,” said Dr. Caligiuri.

This study of cancer-cell-killing (oncolytic) viruses exemplifies the benefits of translational research, in which a problem observed during clinical trials is studied in the laboratory to devise a solution. “In this case, clinical trials of oncolytic viruses proved safe for use in the brain, but we noticed substantial numbers of immune cells in brain tumors after treatment,” remarked senior author and neurosurgeon Dr. E. Antonio Chiocca, who was professor and chair of neurological surgery while at Ohio State University. “To understand this process, we went back to the laboratory and showed that NK cells rapidly infiltrate tumors in mice that have been treated with the therapeutic virus. These NK cells also signal other inflammatory cells to come in and destroy the cancer-killing virus in the tumor.”

The study used an oncolytic herpes simplex virus, human glioblastoma tumor tissue and mouse models, one of which hosted both human glioblastoma cells and human NK cells. Key technical findings include: NK cells in tumors triggered other immune cells (i.e., microglia and macrophages) that have both antiviral and anticancer characteristics; replication of the therapeutic virus in tumor cells in an animal model quickly drew subsets of NK cells to the tumor site; depletion of NK cells improves the survival of tumor-bearing mice treated with the therapeutic virus; NK cells that kill virus-infected tumor cells express the NKp30 and NKp46 receptors molecules that recognize the virus.

“Once we identify the molecules on glioblastoma cells that these NK cell receptors bind with, we might be able to use them to identify patients who will be sensitive to this therapy,” Dr. Caligiuri concluded.

Related Links:

Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute




New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Serological Pipet Controller
PIPETBOY GENIUS
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more

Technology

view channel
Image: The newly designed ExoPatch successfully distinguished melanoma from healthy skin in mice (Photo courtesy of Jeremy Little/Michigan Engineering)

Microneedle Skin Patch Detects Melanoma Without Biopsy or Blood Draw

Melanoma, the most aggressive form of skin cancer, currently requires patients, especially those with fair skin and moles, to undergo regular doctor visits and biopsies every six months to determine if... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.