Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Brain Cancer Patient’s Own Immune Cells May Suppress Viral Therapy

By LabMedica International staff writers
Posted on 03 Dec 2012
Clinicians are now employing cancer-killing viruses to treat some patients with deadly, fast-growing brain tumors. More...
Clinical trials have demonstrated that these therapeutic viruses are safe but less effective than once thought.

A new study led by researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James; Columbus, USA) revealed that the reason for this is partly caused by the patient’s own immune system, which quickly works to eliminate the anticancer virus.

The findings, published November 25, 2012, in the journal Nature Medicine, demonstrate that the body responds to the anticancer virus the same as it does to an infection. Within hours, specialized immune cells called natural killer (NK) cells move in to eliminate the therapeutic virus in the brain.

The researchers discovered that the NK cells attack the viruses when they express specific molecules on their surface called NKp30 and NKp46. “These receptor molecules enable the NK cells to recognize and destroy the anticancer viruses before the viruses can destroy the tumor,” stated cosenior author Dr. Michael A. Caligiuri, director of Ohio State’s Comprehensive Cancer Center and CEO of the James Cancer Hospital and Solove Research Institute, and a senior author of the study. “When we blocked those receptors, the virus has more time to work, and mice with these brain tumors live longer. The next step is to block these molecules on NK cells in glioblastoma patients and see if we can improve their outcome,” said Dr. Caligiuri.

This study of cancer-cell-killing (oncolytic) viruses exemplifies the benefits of translational research, in which a problem observed during clinical trials is studied in the laboratory to devise a solution. “In this case, clinical trials of oncolytic viruses proved safe for use in the brain, but we noticed substantial numbers of immune cells in brain tumors after treatment,” remarked senior author and neurosurgeon Dr. E. Antonio Chiocca, who was professor and chair of neurological surgery while at Ohio State University. “To understand this process, we went back to the laboratory and showed that NK cells rapidly infiltrate tumors in mice that have been treated with the therapeutic virus. These NK cells also signal other inflammatory cells to come in and destroy the cancer-killing virus in the tumor.”

The study used an oncolytic herpes simplex virus, human glioblastoma tumor tissue and mouse models, one of which hosted both human glioblastoma cells and human NK cells. Key technical findings include: NK cells in tumors triggered other immune cells (i.e., microglia and macrophages) that have both antiviral and anticancer characteristics; replication of the therapeutic virus in tumor cells in an animal model quickly drew subsets of NK cells to the tumor site; depletion of NK cells improves the survival of tumor-bearing mice treated with the therapeutic virus; NK cells that kill virus-infected tumor cells express the NKp30 and NKp46 receptors molecules that recognize the virus.

“Once we identify the molecules on glioblastoma cells that these NK cell receptors bind with, we might be able to use them to identify patients who will be sensitive to this therapy,” Dr. Caligiuri concluded.

Related Links:

Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute




Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.