We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Genetically Engineered Periwinkle Plants Produce Anticancer Drugs

By LabMedica International staff writers
Posted on 16 Nov 2010
By transplanting bacterial genes, drug developers have genetically engineered Madagascar periwinkle (Catharanthus) plants to produce halogenated variants of the natural anticancer drug vinblastine.

The periwinkle plant is used by herbalists as an astringent. More...
As a source of natural drugs, its primary use has been to help treat menstrual periods where there was too much heavy bleeding. It has also been used to treat urinary tract problems, such as hematuria, or blood in the urine. Periwinkle also has been used to treat colitis and diarrhea, plus other types of digestive problems, which involve bleeding.

Vinblastine is one the most effective treatments for Hodgkin's disease, and is typically used in combination with doxorubicin, bleomycin, and dacarbazine. It is also used to treat non-Hodgkin's lymphomas, mycosis fungoides, and Letterer-Siwe disease. Vinblastine is also used to treat cancer of the testis in combination with other cancer drugs, and Kaposi's sarcoma alone, or in combination with other drugs. Vinblastine is also used less frequently to treat other types of cancer.

Vinblastine acts by preventing the formation of microtubules in cells. As microtubules are required for cell division, disruption of this function inhibits cell replication, including the replication the cancer cells.

A paper published in the November 3, 2010, online edition of the journal Nature described how investigators at the Massachusetts Institute of Technology (MIT; Cambridge, USA) added bacterial genes to the periwinkle plant, enabling it to attach halogens such as chlorine or bromine to alkaloids such as vinblastine. The halogenases encoded by the bacterial genes functioned within the context of the plant cell to generate chlorinated tryptophan, which was then shuttled into monoterpene indole alkaloid metabolism to yield chlorinated alkaloids.

"We are trying to use plant biosynthetic mechanisms to easily make a whole range of different iterations of natural products,” said senior author Dr. Sarah O'Connor, associate professor of chemistry at the Massachusetts Institute of Technology. "If you tweak the structure of natural products, very often you get different or improved biological and pharmacological activity. Medicinal plants, despite their genetic and developmental complexity, therefore seem to be a viable platform for synthetic biology efforts.”

Related Links:
Massachusetts Institute of Technology




New
Gold Member
Thyroid-Stimulating Hormone Test
ULTRA-TSH
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
C-Reactive Protein Rapid Test
Afinion CRP
New
Hemoglobin Stool Test
CerTest FOB 50 + 200 One Step Combo Card Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: New biomarkers could someday make it easy to spot Parkinson’s disease in a patient’s blood sample (Photo courtesy of Shutterstock)

Unique Blood-Based Genetic Signature Can Diagnose Parkinson’s Disease

Parkinson's disease is primarily recognized for its impact on the central nervous system. Recent scientific progress has shifted focus to understanding the involvement of the immune system in the onset... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: The new tool is designed for accurate detection of structural variations in clinical samples (Photo courtesy of Karen Arnott/EMBL-EBI and Isabel Romero Calvo/EMBL)

ML Algorithm Accurately Identifies Cancer-Specific Structural in Long-Read DNA Sequencing Data

Long-read sequencing technologies are designed to analyze long, continuous stretches of DNA, offering significant potential to enhance researchers' abilities to detect complex genetic changes in cancer genomes.... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.