We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Microscopy Method Enables Detailed Whole Brain 3D RNA Analysis

By LabMedica International staff writers
Posted on 26 Nov 2024

Despite significant advancements in RNA analysis, linking RNA data to its spatial context, particularly in intact, detailed three-dimensional (3D) tissue volumes, has remained a challenging task. More...

Researchers have now developed a microscopy technique that allows for detailed 3D RNA analysis at the cellular level within whole, intact mouse brains. This new method, known as TRISCO, has the potential to revolutionize our understanding of brain function in both healthy and diseased states, as demonstrated in a study published in Science.

The TRISCO technique, developed by researchers at Karolinska Institutet (Stockholm, Sweden) and Karolinska University Hospital (Stockholm, Sweden), enables 3D RNA imaging of entire mouse brains without requiring the brain to be sliced into thin sections, which was a necessary step in previous methods. In the study, up to three different RNA molecules were analyzed simultaneously. The researchers plan to expand this technique to analyze approximately one hundred RNA molecules using multiplex RNA analysis, which could provide even deeper insights into brain function and disease mechanisms.

The TRISCO method opens up new avenues for studying the intricate complexity of the brain, potentially leading to the development of novel treatments for a variety of brain disorders. While the study focused on intact mouse brains, it also shows that the TRISCO method is adaptable to larger brains, such as those of guinea pigs, as well as various tissues, including the kidney, heart, and lungs.

“This method is a powerful tool that can drive brain research forward. With TRISCO, we can study the complex anatomical structure of the brain in a way that was previously not possible,” said Per Uhlén, professor at the Department of Medical Biochemistry and Biophysics, Karolinska Institutet, and the study's last author.


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Portable Electronic Pipette
Mini 96
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The genomic test measures eight gene activities in a melanoma tumor and combines this data with patient factors like age and tumor thickness (Photo courtesy of 123RF)

Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients

Accurately determining whether melanoma has spread to the lymph nodes is crucial for guiding treatment decisions, yet the standard procedure—sentinel lymph node biopsy—remains invasive, costly, and unnecessary... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.