We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Hyperspectral Dark-Field Microscopy Enables Rapid and Accurate Identification of Cancerous Tissues

By LabMedica International staff writers
Posted on 13 May 2024

Breast cancer remains a major cause of cancer-related mortality among women. More...

Breast-conserving surgery (BCS), also known as lumpectomy, is the removal of the cancerous lump and a small margin of surrounding tissue. This procedure is typically advised for women with early-stage breast cancer or small tumors, as it conserves more of the breast tissue compared to a mastectomy. After undergoing BCS, it is critical to verify that all cancerous cells have been removed to decide if additional surgery is necessary. This verification involves a tumor margin assessment, which examines the edges of the excised tissue (tumor margins) to check for residual cancer cells. Conventionally, this assessment entails staining the tissue samples with dyes and inspecting them under a microscope to differentiate between healthy and cancer cells. However, new optical imaging techniques have emerged as quicker alternatives for conducting these assessments.

A group of researchers from the United States, including members from the National Institute of Standards and Technology (NIST, Gaithersburg, MD, USA), has introduced hyperspectral dark-field microscopy (HSDFM) as an effective technique to swiftly and accurately distinguish between cancerous and healthy cells and identify various tumor subtypes in breast tissues post-lumpectomy. In HSDFM, tissue samples are exposed to multiple wavelengths of light, and the varying intensity of light scattered by cellular and molecular components is analyzed to create distinctive spectral signatures for each type of tissue. This technique generates two-dimensional images where each pixel holds spectral data across multiple wavelengths, enabling precise identification of tissue composition. This approach specifically tackles the limitations commonly faced in hyperspectral tumor margin imaging techniques, which typically depend on reflectance to collect spectral information from tissue samples.

Reflectance-based imaging techniques often struggle with issues like the uneven absorption of light by biological substances, such as oxyhemoglobin in blood, which can lead to inconsistent spectral signatures from different samples. In their study, the researchers examined HSDFM images of breast lumpectomy specimens from several patients. They employed two machine learning strategies to categorize the pixels by tissue type: a supervised method and an unsupervised method. The supervised method utilized was spectral angle mapping, which involves comparing the spectral signature of each pixel against known spectral signatures of different tumor subtypes and tissue types (like fat, connective tissue, and blood) previously identified via histopathological analysis.

For the unsupervised method, they applied the K-means clustering algorithm, which sorts pixels into clusters based on similarity in their spectral signatures, thereby aiding in the identification of tumor regions without needing prior spectral data or specific tissue type knowledge. The spectral signatures derived from both the supervised and unsupervised methods were similar and effectively pinpointed areas containing invasive ductal carcinoma—the most prevalent form of breast cancer, accounting for 75% of all cases—as well as invasive mucinous carcinoma, a less common type where cancer cells grow in mucus. The results indicate that the unsupervised approach is validated by the supervised method, suggesting that HSDFM imaging data could be instrumental in developing unsupervised algorithms for the quick and accurate detection of cancerous tissues, which is expected to improve post-surgical monitoring and treatment planning in BCS, enabling more timely interventions.

Related Links:
NIST


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Portable Electronic Pipette
Mini 96
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
New
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AiPlex VAS for the MosaiQ platform is designed to help reduce time-to-diagnosis for patients with autoimmune vasculitis (Photo courtesy of AliveDx)

Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis

Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.