Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI Predicts Cancer Spreading To Brain from Lung Biopsy Images

By LabMedica International staff writers
Posted on 21 Mar 2024

Lung cancer is the leading cause of cancer-related deaths globally, with non-small cell lung cancers making up the majority of cases, which are often linked to smoking. More...

When detected early, these cancers are usually confined to the lung, making surgery the preferred initial treatment. However, about 30% of these early-stage patients see their cancer advance to more critical areas, like the lymph nodes and organs, frequently affecting the brain first. This progression necessitates additional treatments such as chemotherapy, targeted drugs, radiation, or immunotherapy. Unfortunately, despite 70% of patients not developing brain metastasis, doctors have lacked the means to predict whose cancer will progress and often opt for aggressive treatments as a precautionary measure. Now, a new study offers hope in improving the approach to treating early-stage lung cancer by achieving the correct balance between proactive intervention and cautious monitoring.

In the study, scientists at Washington University School of Medicine in St. Louis (St. Louis, MO, USA) employed artificial intelligence (AI) to analyze lung biopsy images and predict the likelihood of the cancer spreading to the brain. Traditionally, pathologists have examined biopsy tissues under a microscope to spot signs of the disease. Now, AI seeks to emulate and enhance this diagnostic accuracy. The researchers trained a machine-learning algorithm with 118 lung biopsy samples from early-stage non-small cell lung cancer patients to predict brain metastasis. Some subjects later developed brain cancer over a five-year follow-up, while others went into remission.

Upon testing the AI on 40 additional patients, the researchers found that the algorithm impressively predicted brain cancer development with 87% accuracy, outperforming the average 57.3% accuracy among four pathologists involved in the study. The AI algorithm was particularly accurate in identifying patients who would remain free from brain metastasis. The algorithm evaluates tumors and healthy cells similar to how the brain recognizes familiar faces through facial features. Yet, the exact features the AI detects remain a mystery, prompting ongoing research to understand the molecular and cellular cues it uses to make predictions. This insight could revolutionize therapeutic development and guide the development of imaging tools tailored for AI data collection, potentially altering the treatment landscape for early-stage lung cancer patients.

“This study started as an attempt to find predictive biomarkers,” said Changhuei Yang, Ph.D., a professor of electrical engineering, bioengineering, and medical engineering at the California Institute of Technology. “But we couldn’t find any. Instead, we found that AI has the potential to make predictions about cancer progression using biopsy samples that are already being collected for diagnosis. If we can get to a prediction accuracy that will allow us to use this algorithm clinically and not have to resort to expensive biomarkers, we are talking about significant ramifications in cost-effectiveness.”

Related Links:
WashU Medicine


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gel Cards
DG Gel Cards
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Additional insight into DNA methylation could enable more accurate and precise diagnoses (Photo courtesy of Shutterstock)

Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs

Diagnosing developmental disorders often relies on DNA sequence analysis, but this approach can miss epigenetic context such as DNA methylation, chemical modifications that regulate whether genes are transcribed.... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

Automated Mass Spectrometry Set to Transform Routine Lab Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.