We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Outperforms Expert Pathologists in Predicting Lung Cancer Spread

By LabMedica International staff writers
Posted on 12 Mar 2024
Print article
Image: AI outperformed expert pathologists in predicting which lung cancer cases are likely to metastasize (Photo courtesy of Shutterstock/Kateryna Kon)
Image: AI outperformed expert pathologists in predicting which lung cancer cases are likely to metastasize (Photo courtesy of Shutterstock/Kateryna Kon)

For years, the medical community has been struggling with the challenge of predicting which lung cancer patients are most likely to experience metastasis. This knowledge is crucial for treating early-stage non-small cell lung cancer (NSCLC) patients, as it influences whether they should undergo aggressive treatments like chemotherapy or radiation after lung surgery. Over half of stage I–III NSCLC patients eventually face brain metastasis, but for many others, such intensive treatments are unnecessary. Now, researchers have found that artificial intelligence (AI) could be a promising tool in aiding physicians with these critical decisions.

A groundbreaking pilot study conducted by Caltech (Pasadena, CA, USA) and Washington University School of Medicine in St. Louis (WUSTL, St. Louis, Mo, USA) revealed AI's capability to outperform expert pathologists in predicting the likelihood of cancer metastasis in NSCLC patients. The study involved training a deep-learning network, a sophisticated type of AI program, using hundreds of thousands of image tiles derived from biopsy images of 118 NSCLC patients. These images are typically reviewed by pathologists for cell abnormalities indicating cancer progression. The AI was tested with 40 additional biopsy images to assess its ability to predict brain metastases, demonstrating a striking 87% accuracy, surpassing the 57% accuracy rate of four expert pathologists.

Notably, the AI's predictions were even more accurate for the earliest-stage NSCLC patients (stage I) and were based on standard microscopic slides. The researchers believe that incorporating more data, such as disease severity and biomarkers, could enhance the AI's predictive capabilities. However, the researchers caution that this is just an initial step, and a larger study is necessary to validate these findings. Interestingly, the AI doesn't explicitly reveal the factors influencing its predictions, prompting ongoing research to decode the complex tumor cell features and their environment it might be analyzing. Going forward, Caltech scientists aim to develop improved instrumentation and procedures for collecting uniform, high-quality biopsy images, which could further refine the accuracy of AI predictions in cancer treatment.

"Overtreatment of cancer patients is a big problem," said Changhuei Yang, the Thomas G. Myers Professor of Electrical Engineering, Bioengineering, and Medical Engineering at Caltech. "Our pilot study indicates that AI may be very good at telling us in particular which patients are very unlikely to develop brain cancer metastasis."

"Our study is an indication that AI methods may be able to make meaningful predictions that are specific and sensitive enough to impact patient management," added Richard Cote, head of the Department of Pathology & Immunology at WUSTL.

Related Links:
Caltech
WUSTL

New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Chagas Disease Test
Simple/Stick Chagas/WB
New
Myocardial Infarction Test
Savvycheck SensA Heart

Print article

Channels

Microbiology

view channel
Image: The breakthrough system offers a faster way to diagnose bloodborne infections (Photo courtesy of Melio)

Culture-Free Platform Rapidly Identifies Blood Stream Infections

Neonatal sepsis is a life-threatening condition that results from bloodstream infections in newborns under 28 days old. Due to their immature immune systems, newborns are especially vulnerable to infections.... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.