We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

AI Outperforms Expert Pathologists in Predicting Lung Cancer Spread

By LabMedica International staff writers
Posted on 12 Mar 2024
Print article
Image: AI outperformed expert pathologists in predicting which lung cancer cases are likely to metastasize (Photo courtesy of Shutterstock/Kateryna Kon)
Image: AI outperformed expert pathologists in predicting which lung cancer cases are likely to metastasize (Photo courtesy of Shutterstock/Kateryna Kon)

For years, the medical community has been struggling with the challenge of predicting which lung cancer patients are most likely to experience metastasis. This knowledge is crucial for treating early-stage non-small cell lung cancer (NSCLC) patients, as it influences whether they should undergo aggressive treatments like chemotherapy or radiation after lung surgery. Over half of stage I–III NSCLC patients eventually face brain metastasis, but for many others, such intensive treatments are unnecessary. Now, researchers have found that artificial intelligence (AI) could be a promising tool in aiding physicians with these critical decisions.

A groundbreaking pilot study conducted by Caltech (Pasadena, CA, USA) and Washington University School of Medicine in St. Louis (WUSTL, St. Louis, Mo, USA) revealed AI's capability to outperform expert pathologists in predicting the likelihood of cancer metastasis in NSCLC patients. The study involved training a deep-learning network, a sophisticated type of AI program, using hundreds of thousands of image tiles derived from biopsy images of 118 NSCLC patients. These images are typically reviewed by pathologists for cell abnormalities indicating cancer progression. The AI was tested with 40 additional biopsy images to assess its ability to predict brain metastases, demonstrating a striking 87% accuracy, surpassing the 57% accuracy rate of four expert pathologists.

Notably, the AI's predictions were even more accurate for the earliest-stage NSCLC patients (stage I) and were based on standard microscopic slides. The researchers believe that incorporating more data, such as disease severity and biomarkers, could enhance the AI's predictive capabilities. However, the researchers caution that this is just an initial step, and a larger study is necessary to validate these findings. Interestingly, the AI doesn't explicitly reveal the factors influencing its predictions, prompting ongoing research to decode the complex tumor cell features and their environment it might be analyzing. Going forward, Caltech scientists aim to develop improved instrumentation and procedures for collecting uniform, high-quality biopsy images, which could further refine the accuracy of AI predictions in cancer treatment.

"Overtreatment of cancer patients is a big problem," said Changhuei Yang, the Thomas G. Myers Professor of Electrical Engineering, Bioengineering, and Medical Engineering at Caltech. "Our pilot study indicates that AI may be very good at telling us in particular which patients are very unlikely to develop brain cancer metastasis."

"Our study is an indication that AI methods may be able to make meaningful predictions that are specific and sensitive enough to impact patient management," added Richard Cote, head of the Department of Pathology & Immunology at WUSTL.

Related Links:

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article


Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more


view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more


view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more


view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.