Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Compact Photoacoustic Sensing Instrument Enhances Biomedical Tissue Diagnosis

By LabMedica International staff writers
Posted on 15 Feb 2024

The pursuit of precise and efficient diagnostic methods is a top priority in the constantly evolving field of biomedical sciences. More...

A promising development in this area is the photoacoustic (PA) technique. Over the past decade, PA imaging has gained traction as a practical imaging modality in various clinical settings where it has demonstrated encouraging results. While traditional diagnostic methods are invasive, PA imaging offers a noninvasive alternative for examining biological tissues. However, its broad clinical application has been hampered by the bulkiness and high cost of laser sources. Now, researchers have introduced a groundbreaking, compact, and affordable PA sensing instrument for biomedical tissue diagnosis. Their proof-of-concept study, utilizing cost-effective diode lasers, marks a significant step toward the transition of PA imaging from laboratory research to clinical application.

For the study, researchers from the IIT Indore (Madhya Pradesh, India) focused on the complex nature of breast tissue, specifically fibrocystic changes, which often present diagnostic challenges due to similarities with breast cancer. These changes can cause breast pain and detectable cysts and are frequently found in peritumoral breast parenchyma, complicating diagnoses. Traditional diagnostic methods like ultrasound and mammography sometimes lack the necessary precision, and fine needle aspiration cytology, a common diagnostic tool, often requires additional invasive procedures for confirmation. The PA technique, leveraging laser diodes, generates acoustic waves that provide critical insights into tissue composition and density.

The novel instrument incorporates multiple laser diodes in a compact design, coupled with a custom-built pulsed current supply unit, producing efficient PA excitation with 25 nanosecond pulses at 20 kHz. The researchers were able to distinguish between normal and diseased breast tissues by analyzing the frequency spectra of PA signals. Analyzing the frequency spectra allowed for quantitative tissue assessment. For example, fibrocystic breast disease showed a dominant frequency peak at around 1.60 MHz, suggesting increased tissue density, while normal breast tissue had a lower peak frequency of 0.26 MHz, indicative of its fibrofatty composition.

Histopathological examinations confirmed these observations, aligning spectral responses with tissue characteristics. The experimental setup differentiated tissue types based on quantitative spectral parameters, enhancing diagnostic accuracy and potentially simplifying the sampling process for pathological breast tissues. The compact PA sensing instrument could emerge as a promising tool for clinical practice, offering rapid, reliable, and cost-effective breast disease diagnosis. This breakthrough paves the way for timely interventions and improved patient outcomes, revolutionizing biomedical practices with a cost-effective and rapid tissue diagnosis approach.

Related Links:
IIT Indore


New
Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
New
Rapid Molecular Testing Device
FlashDetect Flash10
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AiPlex VAS for the MosaiQ platform is designed to help reduce time-to-diagnosis for patients with autoimmune vasculitis (Photo courtesy of AliveDx)

Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis

Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.