We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Compact Photoacoustic Sensing Instrument Enhances Biomedical Tissue Diagnosis

By LabMedica International staff writers
Posted on 15 Feb 2024
Print article
Image: The photoacoustic spectral response sensing instrument is based on low-cost laser diodes (Photo courtesy of Khan et al., doi 10.1117/1.JBO.29.1.017002)
Image: The photoacoustic spectral response sensing instrument is based on low-cost laser diodes (Photo courtesy of Khan et al., doi 10.1117/1.JBO.29.1.017002)

The pursuit of precise and efficient diagnostic methods is a top priority in the constantly evolving field of biomedical sciences. A promising development in this area is the photoacoustic (PA) technique. Over the past decade, PA imaging has gained traction as a practical imaging modality in various clinical settings where it has demonstrated encouraging results. While traditional diagnostic methods are invasive, PA imaging offers a noninvasive alternative for examining biological tissues. However, its broad clinical application has been hampered by the bulkiness and high cost of laser sources. Now, researchers have introduced a groundbreaking, compact, and affordable PA sensing instrument for biomedical tissue diagnosis. Their proof-of-concept study, utilizing cost-effective diode lasers, marks a significant step toward the transition of PA imaging from laboratory research to clinical application.

For the study, researchers from the IIT Indore (Madhya Pradesh, India) focused on the complex nature of breast tissue, specifically fibrocystic changes, which often present diagnostic challenges due to similarities with breast cancer. These changes can cause breast pain and detectable cysts and are frequently found in peritumoral breast parenchyma, complicating diagnoses. Traditional diagnostic methods like ultrasound and mammography sometimes lack the necessary precision, and fine needle aspiration cytology, a common diagnostic tool, often requires additional invasive procedures for confirmation. The PA technique, leveraging laser diodes, generates acoustic waves that provide critical insights into tissue composition and density.

The novel instrument incorporates multiple laser diodes in a compact design, coupled with a custom-built pulsed current supply unit, producing efficient PA excitation with 25 nanosecond pulses at 20 kHz. The researchers were able to distinguish between normal and diseased breast tissues by analyzing the frequency spectra of PA signals. Analyzing the frequency spectra allowed for quantitative tissue assessment. For example, fibrocystic breast disease showed a dominant frequency peak at around 1.60 MHz, suggesting increased tissue density, while normal breast tissue had a lower peak frequency of 0.26 MHz, indicative of its fibrofatty composition.

Histopathological examinations confirmed these observations, aligning spectral responses with tissue characteristics. The experimental setup differentiated tissue types based on quantitative spectral parameters, enhancing diagnostic accuracy and potentially simplifying the sampling process for pathological breast tissues. The compact PA sensing instrument could emerge as a promising tool for clinical practice, offering rapid, reliable, and cost-effective breast disease diagnosis. This breakthrough paves the way for timely interventions and improved patient outcomes, revolutionizing biomedical practices with a cost-effective and rapid tissue diagnosis approach.

Related Links:
IIT Indore

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.