We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanopore Sequencing Cuts Tumor Analysis Times and Costs, Finds Study

By LabMedica International staff writers
Posted on 11 Dec 2023

Copy number variations (CNVs), which activate oncogenes and inactivate tumor suppressor genes, play a crucial role in the development and progression of cancers. More...

As such, CNV analysis is a vital component of tumor grading and diagnosis. Traditionally, this analysis relies on nucleotide hybridization and next-generation sequencing, methods confined to high-complexity centralized laboratories and requiring several days to complete. A more rapid, cost-effective, and straightforward approach to CNV analysis could significantly enhance clinical decision-making, refine surgical planning, and facilitate the identification of potential molecular therapies within the timeframe of surgical procedures. Researchers have now identified nanopore sequencing as a method to refine CNV analysis.

A study conducted by researchers at Dartmouth-Hitchcock Medical Center (DHMC, Lebanon, NH, USA) has found nanopore sequencing to be a more efficient means for CNV analysis. They used Oxford Nanopore’s MinION device, which offers real-time interpretation of long-read nucleotide sequences. To adapt this technology for CNV detection, the team employed a technique involving the random analysis of linked DNA fragments, which allows for the identification of multiple mappable DNA fragments within a single sequencing read.

The study involved analyzing 26 malignant brain tumors using this method. The nanopore sequencing approach successfully detected the same genomic alterations and amplifications as those identified through clinically validated next-generation sequencing and chromosomal microarray analyses. This method also concurrently facilitates tumor methylation classification without necessitating additional tissue preparation, as promoter hypomethylation was observed in all detected amplified oncogenes. A patent application for this novel approach, named irreversible Sticking Compatible Overhang to Reconstruct DNA (iSCORED), is currently pending. The researchers view this accelerated method of CNV analysis as a significant step forward in reducing the time required to identify patients who could benefit from treatment with molecular-targeted therapies.

“The low cost per sample, a mere USD 125, and the ease of setting up the infrastructure with a budget of USD 6,000-8,000 for MinION and USD 14,000-16,000 for PromethION make it an economical option for clinical applications,” stated the researchers. “The unmatched turnaround time of 120-140 minutes further positions our method as a robust and invaluable tool for widespread implementation in clinical settings.”

Related Links:
DHMC
Oxford Nanopore


New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Portable Electronic Pipette
Mini 96
New
Gel Cards
DG Gel Cards
New
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Colorectal cancer under the microscope (Photo courtesy of Adobe Stock)

Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer

Colorectal cancer is the fourth most common cancer in the UK and the second deadliest. New research has revealed that it carries a unique microbial fingerprint, which could help doctors better understand... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.