We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI Model Predicts Patient Outcomes across Multiple Cancer Types

By LabMedica International staff writers
Posted on 07 Dec 2023

In previous research, scientists have examined the impact of mutations in the genes that encode epigenetic factors — elements that influence gene activation or deactivation — on cancer susceptibility. More...

However, understanding the influence of these factors' levels on cancer progression has remained largely unexplored. Addressing this gap, researchers have now developed a groundbreaking artificial intelligence (AI) model based on epigenetic factors that successfully forecasts patient outcomes across various cancer types. It does so by analyzing the gene expression patterns of epigenetic factors within tumors, and categorizing them into distinct groups. This method has been shown to predict patient outcomes more effectively than conventional metrics like cancer grade and stage. Moreover, these insights provide a foundation for future therapies targeting epigenetic factors in cancer treatment, such as histone acetyltransferases and SWI/SNF chromatin remodelers.

Researchers from UCLA Health (Los Angeles, CA, USA) examined the expression patterns of 720 epigenetic factors in tumors from 24 different cancer types. They classified these tumors into unique clusters based on these patterns. Their study revealed that in 10 of these cancer types, the clusters correlated with significant differences in patient outcomes, including progression-free survival, disease-specific survival, and overall survival. This correlation was particularly pronounced in adrenocortical carcinoma, kidney renal clear cell carcinoma, brain lower-grade glioma, liver hepatocellular carcinoma, and lung adenocarcinoma. In these cases, clusters indicating poorer outcomes generally showed higher cancer stages, larger tumor sizes, or more advanced spread.

The researchers then used epigenetic factor gene expression levels to train an AI model, aiming to predict patient outcomes specifically in the five cancer types where survival differences were most significant. The model was able to accurately segregate patients into two groups: those likely to have better outcomes and those facing poorer outcomes. Notably, the genes most critical to the AI model's predictions significantly overlapped with the cluster-defining signature genes.

“Our research helps provide a roadmap for similar AI models that can be generated through publicly-available lists of prognostic epigenetic factors,” said the study’s first author, Michael Cheng, a graduate student in the Bioinformatics Interdepartmental Program at UCLA. “The roadmap demonstrates how to identify certain influential factors in different types of cancer and contains exciting potential for predicting specific targets for cancer treatment.”

Related Links:
UCLA Health 


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Portable Electronic Pipette
Mini 96
New
Sample Transportation System
Tempus1800 Necto
New
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Colorectal cancer under the microscope (Photo courtesy of Adobe Stock)

Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer

Colorectal cancer is the fourth most common cancer in the UK and the second deadliest. New research has revealed that it carries a unique microbial fingerprint, which could help doctors better understand... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.