We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI Model Predicts Brain Cancer Outcomes by Assessing Stained Images of Glioblastoma Tissue

By LabMedica International staff writers
Posted on 24 Aug 2023

Glioblastoma, a swift and aggressive brain cancer, typically grants an average life expectancy of around one-year post-diagnosis. More...

Treating it proves challenging due to substantial variations in each tumor's cellular composition among individuals. This diversity hampers effective strategies. Even after undergoing surgery, radiation, and chemotherapy, residual cancer cells remain. Almost all glioblastoma patients experience a relapse, with differing timelines. Predicting prognosis also presents difficulties, given the complex nature of understanding which cancerous cells drive each patient's glioblastoma. Now, scientists have created an algorithm designed to aid physicians in improving their understanding and targeting of complicated brain tumors.

Scientists at Stanford Medicine (Stanford, CA, USA) have developed an artificial intelligence (AI) model that evaluates stained images of glioblastoma tissue to predict tumor aggressiveness, ascertain the genetic constitution of tumor cells, and assess the presence of substantial cancerous cells post-surgery. The AI model holds the potential to help physicians identify patients exhibiting cellular traits indicative of more aggressive tumors, allowing for expedited follow-up. Typically, doctors and scientists utilize histology images, or pictures of dyed disease tissue, to identify tumor cells and formulate treatment strategies. While these images reveal the shape and location of cancer cells, they provide an incomplete tumor depiction. In recent times, an advanced technique known as spatial transcriptomics has emerged that reveals the cell location and genetic makeup of numerous cell types through specific molecules that identify genetic material in tumor tissue. The spatial transcriptomics data offers unprecedented insights into such tumors but the technique is expensive, with the data generation costing several thousand dollars per patient.

Seeking a more economical approach, Stanford researchers turned to AI. They developed a model that utilizes spatial transcriptomics data to enhance basic histology images, creating a more detailed tumor map. The model was trained on spatial transcriptomics images and genetic data from over 20 glioblastoma patients. From these detailed images, the model was taught to make associations between cell types, cell interactions, and profiles with favorable or unfavorable cancer outcomes. For instance, it found that abnormal clustering of tumor cells resembling astrocytes, or neuron support cells, correlated with faster, more aggressive cancers. Studies show that such bunching of astrocytes prompts biological signaling, driving tumor growth.

By discovering patterns like this telltale clumping, the model could aid drug developers in designing more targeted glioblastoma treatments. Spatial transcriptomics data from the same glioblastoma patients enabled the model to identify diverse tumor cells in corresponding histology images with an accuracy of 78% or higher. Essentially, it used cell shape to predict gene activation, providing insights into a cell's identity. The model could also be used by clinicians to gauge the success of tumor removal after surgery and how much still remains in the brain. For instance, the model revealed that tumor cells with genetic traces of oxygen deprivation are usually situated in the center of a patient’s tumor. Higher proportions of these cells corresponded to worse cancer outcomes. By illuminating the oxygen-deprived cells in histology-stained surgery samples, the model can assist surgeons in estimating residual cancer cells post-surgery and determining the appropriate time for post-surgical resumption of treatment.

After being trained to identify the location of various cell types using basic images, the model was evaluated on a larger, separate data set of histology images from 410 patients. The model inferred cancer outcomes from these images, effectively identifying cell patterns correlating with cancer aggressiveness. The model holds the potential to help physicians identify patients with cell patterns signaling a more aggressive tumor and imminent threat of relapse or rapid growth. Although the researchers are optimistic about the model's predictive capacity, further training on more patients is necessary before its deployment to physicians. The team intends to refine the model to create even more detailed cellular maps of glioblastoma tumors. Currently, a proof-of-concept version of their model, GBM360, is available for researchers to upload diagnostic images and predict glioblastoma patient outcomes. However, the model is still in the research phase, and its algorithmic outcomes should not yet guide patient care. The researchers hope that the algorithm could eventually predict outcomes for other conditions like breast or lung cancers.

Related Links:
Stanford Medicine


New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Collection and Transport System
PurSafe Plus®
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
Blood Glucose Test Strip
AutoSense Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AiPlex VAS for the MosaiQ platform is designed to help reduce time-to-diagnosis for patients with autoimmune vasculitis (Photo courtesy of AliveDx)

Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis

Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.