We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Siemens Healthineers - Laboratory Diagnostics

Download Mobile App




Raman Imaging Probes for Detecting Enzyme Activities Could Aid Disease Diagnosis

By LabMedica International staff writers
Posted on 02 Jun 2023
Print article
Image: Highly sensitive Raman probe detects enzyme expression in heterogeneous tissues (Photo courtesy of Tokyo Tech)
Image: Highly sensitive Raman probe detects enzyme expression in heterogeneous tissues (Photo courtesy of Tokyo Tech)

Enzymes play a crucial role in various biological processes, which makes them suitable biomarkers for disease detection. For instance, cancer diagnosis often uses fluorescence imaging to identify cancer-related enzymes that have multiplied in cells affected by the disease. Given the heterogeneous nature of tumor tissues, being able to detect multiple enzyme activities at once could enhance the precision of cancer visualization and diagnosis. However, detecting multiple enzyme activities using fluorescence imaging can be challenging in heterogeneous tumor tissues and other complex biological phenomena. Raman spectral imaging, with its narrower spectral width, provides a promising alternative for multiplex biological imaging with molecular probes. Over time, a number of functional and activatable Raman probes (dyes) have been developed for bioanalyte detection, but their use for enzyme activity detection has been limited. In addition, prior design strategies have been unsuccessful in controlling the diffusion of enzyme-generated hydrolysis product of these probes, making it difficult to identify areas with targeted enzyme activity in tissues.

Now, a team of researchers led by Tokyo Institute of Technology (Tokyo Tech, Tokyo, Japan) has come up with a novel molecular design approach, taking cues from aggregation-based fluorescent probes. The team has developed activatable Raman probes based on 9CN-rhodol using a novel mechanism for Raman signal activation. The researchers have shown that Raman imaging has more potential for detecting multiple enzyme activities compared to fluorescence imaging. This innovative strategy allows the creation of highly activatable Raman probes that possess strong aggregation and multiplexing ability, providing a promising tool for expanding the range of Raman probes that can detect multiple enzyme activities in heterogeneous biological tissues.

The researchers first synthesized 9CN-rhodol derivatives and chose two, 9CN-JR and 9CN-JCR, to design the activatable Raman probes. They tested the enzyme detection capabilities of both probes in live cells, using a dual-color stimulated Raman scattering (SRS) imaging technique. Among the two, 9CN-JCR outperformed and proved to be the more effective probe for multiplexing. The team then isotope-labeled the nitril group of 9CN-JCR scaffold with Carbon-13 (13C) and Nitrogen-15 (15N), and developed two new isotope edited 9CN-JCR probes for γ-glutamyl transpeptidase and dipeptidyl peptidase-4 enzymes. These 9CN-JCR-based probes successfully detected all enzyme activities simultaneously in the live cell culture.

Additionally, the probes enabled ex vivo imaging of specific cell areas showing targeted enzyme activity in Drosophila wing disk and fat body. The high spatial selectivity and sensitivity exhibited by the 9CN-JCR probes were attributed to the electronic pre-resonance effect of the scaffold dye and aggregate formation of the hydrolysis products formed by probe-cell interaction. These rhodol-based probes could aggregate when reacting with enzymes, which enhanced their intracellular retention and boosted the SRS signal intensity during enzyme detection. Overall, the approach presented in this study could support the development of highly specific activatable Raman probes for simultaneous detection of multiple enzyme activities.

"Our aggregation-based molecular design strategy for Raman probes will offer substantial advantages for applications involving the investigation of enzyme activity associated with diseases and essential biological activities," said Professor Mako Kamiya of Tokyo Tech who led the research.

Related Links:
Tokyo Tech 

New
Platinum Supplier
Xylazine Immunoassay Test
Xylazine ELISA
New
Gold Supplier
Digital Pathology Solution
Dynamyx
New
Basophil Activation Test
Flow CAST
New
C3GR-E Test
CHROMagar C3GR

Print article
GLOBETECH PUBLISHING LLC

Channels

Clinical Chemistry

view channel
Image: The new assays are designed to run on the B•R•A•H•M•S KRYPTOR compact PLUS clinical chemistry analyzer (Photo courtesy of Thermo Fisher)

Breakthrough Immunoassays to Aid in Risk Assessment of Preeclampsia

Preeclampsia is a life-threatening blood pressure condition that can arise during pregnancy and the postpartum phase. This severe pregnancy complication is a primary cause of maternal and fetal mortality... Read more

Molecular Diagnostics

view channel
Image: A CRISPR technology-based diagnostic test detects MPXV in clinical samples with acute precision (Photo courtesy of 123RF)

Powerful Diagnostic Tool Accurately Detects Monkeypox Virus Faster Than Any Method

At present, testing for the monkeypox virus (MPXV) is done mainly in centralized labs, and it can take days to get results due to location and logistical issues. Now, researchers have leveraged cutting-edge... Read more

Hematology

view channel
Image: The US FDA has cleared HemoScreen point of care CBC for direct capillary sampling (Photo courtesy of PixCell Medical)

Point of Care CBC Analyzer with Direct Capillary Sampling Enhances Ease-of-Use and Testing Throughput

The world’s only 5-part differential Complete Blood Count (CBC) analyzer that is FDA-cleared, CE-marked, and TGA-approved for point-of-care use has now been granted FDA 510(k) clearance for direct capillary... Read more

Immunology

view channel
Image: Immune cells present long before infection predict flu symptoms (Photo courtesy of Shutterstock.com)

Single Blood Draw to Detect Immune Cells Present Months before Flu Infection Can Predict Symptoms

For decades, if not centuries, scientists have struggled to solve the mystery of why certain individuals fall ill to infections while others remain unaffected. In an impressive development, researchers... Read more

Microbiology

view channel
Image: The rapid diagnostic test could pinpoint the correct antibiotic for infection treatment in under an hour (Photo courtesy of Microplate Dx)

Point-of-Care Device to Reduce Antibiotic Susceptibility Testing Time from Days to Minutes

Antimicrobial resistance (AMR) is a significant global health issue, currently leading to over 1.27 million deaths worldwide each year. By 2050, AMR could be causing up to 10 million deaths annually, surpassing... Read more

Technology

view channel
Image: A new electrochemical device can quickly and inexpensively identify people at greatest risk for osteoporosis (Photo courtesy of ACS Central Science, 2023)

Electrochemical Device Identifies People at Higher Risk for Osteoporosis Using Single Blood Drop

With the global increase in life expectancy, the incidence of age-related conditions like osteoporosis is increasing. Osteoporosis, affecting around 200 million individuals worldwide, has a higher incidence... Read more

Industry

view channel
Image: The global fully automatic electrolyte analyzers market is projected to reach close to USD 0.77 billion by 2032 (Photo courtesy of 123RF)

Global Fully Automatic Electrolyte Analyzers Market Driven by Surge in Demand for Point-of-Care Testing

Fully automatic electrolyte analyzers can measure the levels of electrolytes in various bodily fluids like blood and plasma. Electrolytes are ions that have an electrical charge and are essential for multiple... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.