We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AI-Based Method Could Replace Chemical Staining of Histopathological Tissue Samples

By LabMedica International staff writers
Posted on 17 Apr 2023
Print article
Image: An example of virtual staining of tissue (Photo courtesy of University of Turku)
Image: An example of virtual staining of tissue (Photo courtesy of University of Turku)

For over a century, chemical staining has been a foundational technique in the study of histopathology, particularly in areas like cancer diagnostics. One major drawback of chemical staining, however, is its irreversible nature, which often restricts the sample's use in other tests or experiments. To address this limitation, researchers have developed an artificial intelligence (AI)-based approach to virtually stain histopathological tissue samples, potentially replacing the need for chemical staining.

A study led by researchers from the University of Eastern Finland (Kuopio, Finland) has resulted in the development of an AI method that generates computational images closely resembling those obtained through actual chemical staining. These virtually stained images can then be examined for tissue morphology. The virtual staining technique not only reduces the chemical load and manual labor required for sample processing but also allows the tissue to be used for other purposes beyond staining. A key advantage of the proposed method is that it only requires a standard light microscope and an appropriate computer, with no need for specialized hardware or infrastructure.

The rapid advancement of deep neural networks, which learn from vast amounts of data, has revolutionized biomedical image analysis. These methods are not only suitable for traditional image analysis tasks, such as interpretation, but also excel in image-to-image transformations. Virtual staining exemplifies this type of task and was effectively demonstrated by the research team.

“The results are very widely applicable. There are plenty of topics for follow-up research, and the computational methods can still be improved. However, we can already envision several application areas where virtual staining can have a major impact in histopathology,” says Associate Professor Pekka Ruusuvuori from the University of Turku, who led the computational part of the study.

“Deep neural networks are capable of performing at a level we were not able to imagine a while ago. Artificial intelligence-based virtual staining can have a major impact towards more efficient sample processing in histopathology,” said Doctoral Researcher Umair Khan from the University of Turku who was the lead developer.

Related Links:
University of Eastern Finland 

Gold Supplier
Automated, Random Access Chemistry Analyzer
LIDA 300
Cardiac Test
ImmunTech Cardiac Triple Test
UHF RFID Tag and Inlay

Print article


Clinical Chem.

view channel
Image: Electrochemical cells etched by laser on wooden tongue depressor measure glucose and nitrite in saliva (Photo courtesy of Analytical Chemistry)

Biosensor-Fabricated Wooden Tongue Depressor Measures Glucose and Nitrite in Saliva

Physicians often use tongue depressors to examine a patient's mouth and throat. However, it is hard to imagine that this simple wooden tool could actively assess a patient's health. This idea has led to... Read more


view channel
Image: The Atellica HEMA 570 and 580 hematology analyzers remove workflow barriers (Photo courtesy of Siemens)

Next-Gen Hematology Analyzers Eliminate Workflow Roadblocks and Achieve Fast Throughput

Hematology testing is a critical aspect of patient care, utilized to establish a patient's health baseline, track treatment progress, or guide timely modifications to care. However, increasing constraints... Read more


view channel
Image: Newly observed anti-FSP antibodies have also been found to predict immune-related adverse events (Photo courtesy of Calviri)

First Blood-Based Biomarkers Test to Predict Treatment Response in Cancer Patients

Every year worldwide, lung cancer afflicts over two million individuals and almost the same number of people succumb to the disease. This malignancy leads the charts in cancer-related mortalities, with... Read more


view channel
Image: The rapid MTB strip test for tuberculosis can identify TB patients within two hours (Photo courtesy of Chulalongkorn University)

Rapid MTB Strip Test Detects Tuberculosis in Less Than an Hour without Special Tools

Tuberculosis (TB), a highly infectious disease, continues to pose significant challenges to public health worldwide. TB is caused by a bacterium known as "Mycobacterium tuberculosis," spreading through... Read more


view channel
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)

Electronic Biosensor Detects Biomarkers in Whole Blood Samples without Addition of Reagents

The absence of robust, reliable, and user-friendly bioanalytical tools for early and timely diagnosis of cardiovascular diseases, particularly sudden cardiac arrest, leads to preventable deaths and imposes... Read more


view channel
Image: The Coris acquisition provides Avacta with a broad, professional-use rapid test product portfolio (Photo courtesy of Coris Bioconcept)

Avacta Expands Diagnostics Portfolio with Acquisition of Rapid Test Maker Coris Bioconcept

Avacta Group plc (London, UK), a life sciences company developing oncology drugs and diagnostics, has acquired Coris Bioconcept SRL (Gembloux, Belgium) for an upfront cash consideration of GBP 7.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.