We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Application in Pathology Reveals Novel Insights in Endometrial Cancer Diagnostics

By LabMedica International staff writers
Posted on 19 Dec 2022
Print article
Image: A new study has shown the power of AI applied to endometrial carcinoma microscopy images (Photo courtesy of Pexels)
Image: A new study has shown the power of AI applied to endometrial carcinoma microscopy images (Photo courtesy of Pexels)

Endometrial carcinoma is the most common cancer of the gynecologic tract. Now, researchers have shown the power of artificial intelligence (AI) can be applied to endometrial carcinoma microscopy images, offering novel insights that could improve diagnosis and treatment of uterine cancer.

In the past years, researchers at Leiden University (Leiden, the Netherlands) had played a leading role in the development of a novel tumor classification system based on molecular alterations, resulting in four endometrial cancer subtypes. This time, the team set out to investigate if it was possible to predict these molecular classes, based on microscopy-images alone. The researchers applied artificial intelligence on microscopy images of thousands of endometrial carcinoma images from patients that participated in the study.

The team developed a model that robustly predicts the four molecular classes of endometrial carcinomas based on one (hematoxylin and eosin)-stained microscopy slide image, which is the standard histological stain used in diagnostics for assessment of tumor grading and histological subtyping. This model was not “a black-box”, but through reverse-engineering the researchers were able to show which image-features were relevant for its predictions. The model provided the team with important novel insights that can be utilized in future studies to further improve diagnostics, prognostication, and management of endometrial cancer patients.

“The application of AI in pathology is emerging,” said Dr. Tjalling Bosse at Leiden University. “In this project we studied the morphology of tumors that shared the same molecular alteration to better understand the effect these changes have on the appearance of the tumor. With this work, the computer model has directed us to areas in- and outside the tumor that are important.”

“In cancer diagnostics, the number of variables (molecular, tumor morphology, patient data) has increased exponentially and has complexified patient prognosis prediction,” added Sarah Fremond. “Through training unbiased AI models, AI predictions can also teach pathologists in return by, for instance, identifying novel morphological details on microscopy slide images with prognostic value.”

Related Links:
Leiden University

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Cytomegalovirus Real-Time PCR Test
Quanty CMV Virus System
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.