We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Advanced Mass Spectrometry Could Provide Microscopic Clues to Beating Deadly Brain Tumors

By LabMedica International staff writers
Posted on 01 Nov 2022
Print article
Image: Claire Carter, Ph.D., an expert in MALDI, led the new research (Photo courtesy of CDI)
Image: Claire Carter, Ph.D., an expert in MALDI, led the new research (Photo courtesy of CDI)

Glioblastoma is one of the most difficult cancers, let alone diseases, to treat. The brain tumor presents a median survival rate of just 12 to 15 months. The cancer is especially hard to beat, since it presents so heterogeneously – with different tumor cell subtypes within the same tumor, which can all respond differently to therapy. The cancer also has a tendency to create aberrant small blood vessel networks quickly, helping it spread quickly – and making it particularly hard to defeat through traditional treatment pathways. Now, scientists have discovered that a critical new pathway to treating glioblastoma might be found in the complex diversity within the tumor tissue.

A team of scientists at the Hackensack Meridian Center for Discovery and Innovation (CDI, Nutley, NJ, USA) deeply analyzed tumor tissue using an advanced mass spectrometry with special focus on lipids, a class of molecules that includes fats. The scientists assessed five human samples of brain tumor tissue. The team looked at a series of different lipids, in different sections of the tumor and the surrounding environment, and found a series of possible treatment candidates.

“Lipid ions presented here lay the foundation for future studies that are required to understand their interconnecting signaling pathways in relation to cell function, tumor progression, and resistance to therapy,” according to the paper. “Understanding their functional relevance is essential for the identification of new therapeutics based on lipid pathway targets.”

“In conclusion, high resolution MALDI MSI identified a number of lipids that differentiate tumor and endothelial cell subpopulations within human glioblastoma samples,” the authors write. “The heterogenous distributions… within these cell population further highlight the complexity of the glioblastoma TME.”

The scientists hypothesize that a multi-pronged approach may fare best against the stubborn cancer.

“Targeting several of these lipids and their signaling pathways simultaneously, however, may improve clinical outcome,” they write.

Related Links:

Gold Supplier
Real-Time PCR System
Applied Biosystems QuantStudio 7 Pro Dx
Molecular Diagnostic STI Test
Auto Liquid Handling & Homogenizer Workstation
LH 96
POC Molecular Diagnostics Analysis System
ClariLight CL30

Print article


Clinical Chem.

view channel
Image: Equivalence of Genetically Elevated LDL and Lipoprotein(a) on Myocardial Infarction (Photo courtesy of Viborg Regional Hospital)

Familial Hypercholesterolemia Patients With ACD Have Elevated Lipoprotein(a)

Familial hypercholesterolemia (FH) is a genetic disorder characterized by high cholesterol levels, specifically very high levels of low-density lipoprotein (LDL cholesterol), in the blood and early cardiovascular... Read more

Molecular Diagnostics

view channel
Image: A cheap blood test could improve diagnosis of myocarditis (Photo courtesy of Queen Mary University of London)

First-Ever Blood Test Could Detect Deadly Heart Inflammation Within Hours

Myocarditis, or inflammation of the heart muscle, is a difficult condition to diagnose. Symptoms include a temperature, fatigue, chest pain and shortness of breath, which can all be easily mistaken for... Read more


view channel
Image: Ring-form trophozoites of Plasmodium vivax in a thin blood smear (Photo courtesy of Centers for Disease Control and Prevention)

Immune Regulators Predict Severity of Plasmodium vivax Malaria

Cytokines and chemokines are immune response molecules that display diverse functions, such as inflammation and immune regulation. In Plasmodium vivax infections, the uncontrolled production of these molecules... Read more


view channel
Image: With Cell IDx’s acquisition, Leica Biosystems will be moving its multiplexing menu forward (Photo courtesy of Leica Biosystems)

Leica Biosystems Acquires Cell IDx, Expanding Offerings in Multiplexed Tissue Profiling

Leica Biosystems, a technology leader in automated staining and brightfield and fluorescent imaging (Nussloch, Germany), has acquired Cell IDx, Inc. (San Diego, CA, USA), which provides multiplex staining... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.