We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics - An LGC Company

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Novel Microfluidic qDBS-Sampling Technology Could Find Broader Use in Clinical Diagnosis

By LabMedica International staff writers
Posted on 07 Oct 2022
Print article
Image: Capitainer B card’s microfluidic qDBS technology provides exact sample volume to a pre-cut DBS disc (Photo courtesy of Capitainer)
Image: Capitainer B card’s microfluidic qDBS technology provides exact sample volume to a pre-cut DBS disc (Photo courtesy of Capitainer)

Dried blood spot (DBS) sampling has been used since the 1960s when introduced in newborn screening. However, a major drawback of conventional DBS cards is the lack of volumetric control and the hematocrit (Ht) effect. As a different Ht, due to different blood viscosity, leads to different spot size a standardized subpunch on conventional DBS does still not provide an exact volume. These limitations reduce conventional DBS to qualitative or semi-quantitative analysis, while most clinical tests are quantitative. To counter this challenge, a novel microfluidic quantitative DBS (qDBS) technology provides an exact sample volume to a pre-cut DBS disc. Since the full volume defined spot is used for analysis, the Ht effect is overcome and the microsample can be used for quantitative tests. Now, a new collaboration aims to accelerate method development for the implementation of a novel microfluidic qDBS-sampling based technology for clinical diagnostics in the US and globally.

Capitainer AB (Solna, Sweden) has entered a collaboration agreement with Timothy J. Garrett Laboratory, College of Medicine, University of Florida (Gainesville, FL, USA) to accelerate method development and pave the way for broader use of the company’s qDBS technology in clinical diagnosis. Capitainer has developed qDBS technology, a microfluidsystem-based technology that offers a solution for easy and accurate self sampling. Capitainer’s blood sampling cards are built on its qDBS technology. It uses a combination of paper and polymer microfluidics to meter a 10 µl fixed volume from an undefined volume of finger prick blood. After applying a drop of blood to the inlet, a metering channel in the device is automatically filled. A valve composed of a thin dissolvable membrane then opens up and removes excessive blood at the inlet. Subsequently, a second membrane opens up, allowing for transfer of the metered blood volume onto the sample collection disk. The sample is allowed to dry forming a high quality DBS sample suitable for quantitative analysis.

Capitainer's qDBS-sampling technology has been validated in real world population studies. No less than 97% of the cards sent back by regular mail to the lab met the approved quality standard for analysis. Additionally, a major study on the advantages of volumetric microsampling DBS devices in monitoring patients with phenylketonuria (PKU), demonstrated conclusively the superiority of Capitainer's solution over conventional cards and competition. Capitainer has been shown to have a superior product for self-sampling with excellent usability and volumetric accuracy and precision. However, there is a shortage of clinical laboratories and methods for microsamples collected at home, and the collaboration will accelerate development of necessary laboratory tools.

"I'm excited about developing precision diagnostics that will enable future health care and look forward to this collaborative effort," said Dr. Timothy Garrett, an associate professor in the university's Department of Pathology, Immunology and Laboratory Medicine. "Our success would mean a changed landscape for medical diagnostics."

"Now we can together develop new clinical analysis in areas of screening, diagnostics and metabolomics research starting at the 1st Step. A new, improved, more precise, protected dried blood spot," said Dr. Donald H. Chace, Capitainer's North America representative who will also add his vast experience in dried blood spot analysis, covering neonatology, clinical chemistry, newborn screening, mass spectrometry and forensic science. This combined with Garrett's access to a network of clinics for collaboration will, Capitainer believes, create the ideal foundation for new testing method development and validation.

Related Links:
Capitainer AB 
University of Florida 

Gold Supplier
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Thyroglobulin (Tg) Assay
Automated Sample Preparation System
Fecal Calprotectin Testing Reagent
OC-FCa Reagent

Print article


Clinical Chem.

view channel
Image: Brief schematic diagram of the detection principle and method (Photo courtesy of CAS)

Rapid, Non-Invasive Method Diagnoses Type 2 Diabetes by Sniffing Urinary Acetone

Over 90% of diabetes cases are attributed to Type 2 diabetes (T2D), a prevalent metabolic condition that is expected to impact 380 million individuals globally by 2025. Despite being highly accurate, the... Read more

Molecular Diagnostics

view channel
Image: Researchers have identified the origin of subset of autoantibodies that worsen lupus (Photo courtesy of Pexels)

Lupus Biomarker Testing Could Help Identify Patients That Need Early and Aggressive Treatment

Systemic lupus erythematosus (SLE) is an autoimmune disease that occurs when the body's antibodies, which usually protect against infections, attack healthy cells and proteins. These autoantibodies can... Read more


view channel
Image: A genetic test could guide the use of cancer chemotherapy (Photo courtesy of Pexels)

Genetic Test Predicts Whether Bowel Cancer Patients Can Benefit From Chemotherapy

Late-stage bowel cancer patients usually undergo a series of chemotherapies and targeted medicines for cancer treatment. However, the responses to the last-line chemotherapy treatment trifluridine/tipiracil... Read more


view channel
Image: Use of DBS samples can break barriers in hepatitis C diagnosis and treatment for populations at risk (Photo courtesy of Pexels)

DBS-Based Assay Effective in Hepatitis C Diagnosis and Treatment for At Risk Populations

In a bid to eliminate viral hepatitis as a public health threat by 2030, the World Health Organization (WHO) has put forth a proposed strategy. To this end, researchers at the Germans Trias i Pujol Research... Read more


view channel
Image: Live view of non-fluorescent specimens using the glowscope frame (Photo courtesy of Winona State University)

Device Converts Smartphone into Fluorescence Microscope for Just USD 50

Fluorescence microscopes are utilized to examine specimens labeled with fluorescent stains or expressing fluorescent proteins, like those tagged with green fluorescent protein. However, since these microscopes... Read more


view channel
Image: The global antimicrobial resistance diagnostics market size is expected to reach USD 5.7 billion by 2028 (Photo courtesy of Pexels)

Global Antimicrobial Resistance Diagnostics Market Driven by Increasing Hospital-Acquired Infections

Antimicrobial drugs are intended to counteract the harmful effects of microbes and promote a healthy life. However, their excessive use can result in the development of resistance, commonly referred to... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.