We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Novel Microfluidic qDBS-Sampling Technology Could Find Broader Use in Clinical Diagnosis

By LabMedica International staff writers
Posted on 07 Oct 2022

Dried blood spot (DBS) sampling has been used since the 1960s when introduced in newborn screening. More...

However, a major drawback of conventional DBS cards is the lack of volumetric control and the hematocrit (Ht) effect. As a different Ht, due to different blood viscosity, leads to different spot size a standardized subpunch on conventional DBS does still not provide an exact volume. These limitations reduce conventional DBS to qualitative or semi-quantitative analysis, while most clinical tests are quantitative. To counter this challenge, a novel microfluidic quantitative DBS (qDBS) technology provides an exact sample volume to a pre-cut DBS disc. Since the full volume defined spot is used for analysis, the Ht effect is overcome and the microsample can be used for quantitative tests. Now, a new collaboration aims to accelerate method development for the implementation of a novel microfluidic qDBS-sampling based technology for clinical diagnostics in the US and globally.

Capitainer AB (Solna, Sweden) has entered a collaboration agreement with Timothy J. Garrett Laboratory, College of Medicine, University of Florida (Gainesville, FL, USA) to accelerate method development and pave the way for broader use of the company’s qDBS technology in clinical diagnosis. Capitainer has developed qDBS technology, a microfluidsystem-based technology that offers a solution for easy and accurate self sampling. Capitainer’s blood sampling cards are built on its qDBS technology. It uses a combination of paper and polymer microfluidics to meter a 10 µl fixed volume from an undefined volume of finger prick blood. After applying a drop of blood to the inlet, a metering channel in the device is automatically filled. A valve composed of a thin dissolvable membrane then opens up and removes excessive blood at the inlet. Subsequently, a second membrane opens up, allowing for transfer of the metered blood volume onto the sample collection disk. The sample is allowed to dry forming a high quality DBS sample suitable for quantitative analysis.

Capitainer's qDBS-sampling technology has been validated in real world population studies. No less than 97% of the cards sent back by regular mail to the lab met the approved quality standard for analysis. Additionally, a major study on the advantages of volumetric microsampling DBS devices in monitoring patients with phenylketonuria (PKU), demonstrated conclusively the superiority of Capitainer's solution over conventional cards and competition. Capitainer has been shown to have a superior product for self-sampling with excellent usability and volumetric accuracy and precision. However, there is a shortage of clinical laboratories and methods for microsamples collected at home, and the collaboration will accelerate development of necessary laboratory tools.

"I'm excited about developing precision diagnostics that will enable future health care and look forward to this collaborative effort," said Dr. Timothy Garrett, an associate professor in the university's Department of Pathology, Immunology and Laboratory Medicine. "Our success would mean a changed landscape for medical diagnostics."

"Now we can together develop new clinical analysis in areas of screening, diagnostics and metabolomics research starting at the 1st Step. A new, improved, more precise, protected dried blood spot," said Dr. Donald H. Chace, Capitainer's North America representative who will also add his vast experience in dried blood spot analysis, covering neonatology, clinical chemistry, newborn screening, mass spectrometry and forensic science. This combined with Garrett's access to a network of clinics for collaboration will, Capitainer believes, create the ideal foundation for new testing method development and validation.

Related Links:
Capitainer AB 
University of Florida 


Gold Member
Troponin T QC
Troponin T Quality Control
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Hemoglobin Stool Test
CerTest FOB 50 + 200 One Step Combo Card Test
New
Varicella Zoster Test
ZEUS ELISA Varicella Zoster IgG Test System
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Technology

view channel
Image: The machine learning-based method delivers near-perfect survival estimates for PAC patients (Photo courtesy of Shutterstock)

AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. With more than 3.3 million men in the United States diagnosed... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.