We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Detects Parasite from Photos of Blood Samples Taken with Smartphone

By LabMedica International staff writers
Posted on 02 Aug 2022

Chagas disease caused by the parasite Trypanosoma cruzi is a chronic infectious condition whose prevention requires control of its vectors, the triatomines (kissing bugs), and hence a response by public health services. More...

Endemic in 21 countries in the Americas, Chagas disease affects some six million people, with an annual incidence of 30,000 new cases in the region, leading to 14,000 deaths per year on average. Some 70 million people are estimated to risk contracting the disease because they live in areas exposed to triatomines. One of the techniques used to diagnose Chagas is performed by microscopists trained to detect the parasite in blood samples. This requires a professional microscope, which can be coupled to a high-resolution camera, but the method tends to be too expensive and unaffordable for low-income patients. Now, a new study has shown that artificial intelligence (AI) can be used to detect Trypanosoma cruzi in images of blood samples taken with a smartphone camera and analyzed by optical microscope.

The machine learning approach developed by researchers at the University of São Paulo (São Paulo, Brazil) was based on a random forest algorithm trained to detect and count T. cruzi trypomastigotes in mobile phone images. Trypomastigotes are the extracellular form of the protozoan and the only stage that circulates in the bloodstream of patients with acute Chagas. Images of blood smear samples taken with a camera capable of 12 megapixel resolution were analyzed to arrive at a set of features common to 1,314 parasites, including morphometric parameters (shape and size), color and texture.

In the study, parasite specialists trained the algorithm to recognize Trypanosoma cruzi, assisted by machine learning and image processing specialists. The features were divided into training and testing sets and classified using the random forest algorithm. The resulting values for accuracy and sensitivity were considered high (87.6% and 90.5% respectively). The researchers also analyzed the area under the receiver operating characteristic curve (AUC-ROC), a graphical representation widely used to assess diagnostic accuracy and optimal test cut-off. The result was 0.942, considered outstanding (the higher the area under the curve, the more accurate the test). The researchers concluded that automating the analysis of images acquired with a mobile device is a viable alternative for reducing costs and gaining efficiency in the use of the optical microscope. The algorithm is open software so that the scientific community can contribute data and resources.

“We got good results in this machine learning initiative. The algorithm works well for Chagas and can be adapted for other purposes that depend on images, such as analyzing samples of feces, skin and colposcopies,” said Helder Nakaya, a principal investigator at the Center for Research on Inflammatory Diseases. “The point is to generate images and analyze them under a microscope that can be sent to remote parts of Brazil. The app itself must say whether they are images of the parasite that causes Chagas. It’s therefore important to have a robust and affordable microscope that can collect the images automatically.”

Related Links:
University of São Paulo 


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Serological Pipet Controller
PIPETBOY GENIUS
New
UHF RFID Tag & Inlay
AD-327 U9 ETSI Pure 95
New
Shaking Incubator
Corning LSE 71L
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Technology

view channel
Image: The second-generation sampler currently under development (Photo courtesy of Breathe BioMedical)

Breath Test to Enable Early Detection of Breast Cancer

Mammograms often fail to detect breast cancer in women with dense breast tissue, missing up to 60% of cases due to reduced image clarity. Breath analytics has the potential to allow for timely detection... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.