We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

AI-3D Collaboration to Provide Never-Before-Seen View and Understanding of Prostate Cancer Cells

By LabMedica International staff writers
Posted on 23 Jun 2022
Print article
Image: Scientists blend AI and 3D tissue imaging to identify aggressive prostate cancer (Photo courtesy of Pexels)
Image: Scientists blend AI and 3D tissue imaging to identify aggressive prostate cancer (Photo courtesy of Pexels)

Prostate cancer is the most common non-skin cancer in the US. Doctors will diagnose one in eight men nationally with prostate cancer, and one in 40 will die from the disease, according to the latest data. Researchers now expect to gain valuable new insights into highly aggressive prostate cancer by combining Artificial Intelligence (AI)-powered diagnostic imaging with three-dimensional (3D) tissue imaging.

This new AI-3D collaboration will provide a never-before-seen, expanded view and understanding of prostate cancer cells, made possible by a new approach called “light sheet microscopy,” according to researchers at Case Western Reserve University (Cleveland, OH, USA) and University of Washington (Seattle, WA, USA). That fine detail will hopefully reveal even more information about how to identify which prostate cancer cases will be more aggressive in patients. Knowing that could help clinicians determine who would benefit from surgery or radiation therapy - and which patients might be actively monitored instead.

Researchers could also be laying the groundwork to develop what are called “pathomic-based classifiers” of disease outcome for a host of other cancers. Pathomics refers to the application of computer vision and AI to extract a large number of features from tissue images using data-characterization algorithms. The features can then help uncover tumors and other characteristics usually invisible to the naked eye.

Until now, researchers were using machine learning to focus entirely on two-dimensional images. The research team has now developed a new, non-destructive method that images entire 3D biopsies instead of just a slice. This technique provides full-view images of the tissue and improved predictions of whether the patient had an aggressive cancer. The 3D images provide more information than a 2D image. In this case, that means details about the intricate tree-like structure of the glands throughout the tissue. The 3D features made it easier for a computer to identify which patients were more likely to have cancer return within five years. The researchers expect this “non-destructive 3D pathology” to become increasingly valuable in clinical decision-making, such as which patients would require more aggressive treatment or respond to certain drugs.

“This is an unprecedented meshing of the two most powerful technologies in this area,” said Anant Madabhushi, director of the Center for Computational Imaging and Personalized Diagnostics at Case Western Reserve. “We’ll take the AI we’ve developed and, for the first time, be able to apply it to 3D tissue-imaging that the University of Washington excels in—and gain fine, granular detail.”

“We believe that we’ll be able to train our AI to interrogate 3D tissue images with the same success we have had with two-dimensional images,” Madabhushi added. “But there are so many new possibilities for finding new information in 3D.”

“With the success of our open-top light-sheet microscopy technologies, an obvious next challenge to overcome was processing and analyzing the massive feature-rich 3D datasets that we were generating from clinical specimens,” said and Jonathan Liu, a professor of mechanical engineering and bioengineering at the University of Washington. He said collaborating with Madabhushi’s lab at Case Western Reserve was an “obvious and ideal choice, since developing explainable AI methods will facilitate clinical adoption of a new imaging technology such as ours.”

Related Links:
Case Western Reserve University 
University of Washington 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
POCT Fluorescent Immunoassay Analyzer
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article


Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more


view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more


view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more


view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.