We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Nanoparticle Delivery of Drug Combination Blocks Pancreatic Cancer Growth in Mouse Model

By LabMedica International staff writers
Posted on 06 Apr 2015
Cancer researchers using two potent chemotherapeutic agents combined in one nanoparticle demonstrated significant improvement in the treatment of pancreatic tumors in a mouse model.

The current frontline method for treatment of pancreatic cancer is a combination of gemcitabine and Abraxane. More...
Gemcitabine is a pyrimidine antimetabolite that interferes with the metabolism and growth of cells by replacing the pyrimidine deoxycytidine in DNA, thereby preventing the DNA from being manufactured or repaired. As a result, cells cannot reproduce and eventually die. Abraxane is nanoparticle albumin-bound form of paclitaxel, a chemotherapy agent made from the needles and bark of certain kinds of yew trees that is used to treat breast cancer. Paclitaxel improves the pharmaceutical efficacy of gemcitabine through suppression of the tumor stroma and inhibiting the expression of the gemcitabine-inactivating enzyme, cytidine deaminase (CDA). Gemcitabine and Abraxane are administered separately, which works to a certain extent, but as the drugs have different half-lives in the body, the combined beneficial effect is not fully synchronized.

Investigators at the University of California, Los Angeles (UCLA; USA) asked whether it would be possible to develop a mesoporous (containing pores with diameters between two and 50 nanometers) silica nanoparticle (MSNP) carrier to co-deliver a synergistic gemcitabine/paclitaxel combination to pancreatic cancer cells.

High drug loading was achieved by a custom-designed coated lipid film technique to encapsulate a calculated dose of gemcitabine (40% by weight) by using a supported lipid bilayer (LB). The uniform coating of the 65 nanometer nanoparticles by a lipid membrane allowed incorporation of a sub-lethal amount of hydrophobic paclitaxel, which could be co-delivered with gemcitabine to pancreatic cells and tumors.

To demonstrate the in vivo efficacy of the nanoparticle delivery system, mice carrying subcutaneous PANC-1 xenografts received intravenous (IV) injection of paclitaxel-gemcitabine loaded nanoparticles. Results published in the March 16, 2015, online edition of the journal ACS Nano showed that drug co-delivery provided more effective tumor shrinkage than gemcitabine loaded nanoparticles, free gemcitabine, or free gemcitabine plus Abraxane. Comparable tumor shrinkage required co-administration of 12 times the amount of free Abraxane.

HPLC (high pressure liquid chromatograph) analysis of tumor-associated gemcitabine metabolites confirmed that, compared to free gemcitabine, nanoparticle co-delivery increased the phosphorylated, DNA-interactive gemcitabine metabolite 13-fold, while decreasing the inactivated, deaminated metabolite four-fold. IV injection of nanoparticle-delivered gemcitabine/paclitaxel in a PANC-1 orthotropic model effectively inhibited primary tumor growth as well as eliminating metastatic foci. The enhanced in vivo efficacy of the dual delivery carrier could be achieved with no evidence of local or systemic toxicity.

“Instead of just a laboratory proof-of-principle study of any cancer, we specifically attacked pancreatic cancer with a custom-designed nanocarrier,” said senior author Dr. Andre Nel, professor of medicine at UCLA. “In our platform, the drugs are truly synergistic because we have control over drug mixing, allowing us to incorporate optimal ratios in our particles, making the relevance of our models very high and our results very strong.”

Related Links:

University of California, Los Angeles



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Serological Pipet Controller
PIPETBOY GENIUS
New
Hemodynamic System Monitor
OptoMonitor
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: EvoLiver is the first test to receive FDA Breakthrough Device Designation in five years in the liver cancer surveillance space (Photo courtesy of Mursla Bio)

Patient-Friendly Blood Test to Transform Liver Cancer Surveillance

Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is the fastest-growing cause of cancer-related deaths. Although clinical guidelines recommend routine surveillance for high-risk... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.