We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




The Captureseq Technique Is More Accurate for Low Expressing Genes and Long Non-Coding RNAs

By LabMedica International staff writers
Posted on 24 Mar 2015
The powerful new CaptureSeq technique for gene analysis was shown to be superior for detecting and quantifying genes with low expression while showing little technical variation and accurately measured differential expression of long non-coding RNAs (lncRNAs).

Long non-coding RNAs (long ncRNAs, lncRNA) are non-protein coding transcripts longer than 200 nucleotides. More...
This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. LncRNAs have been found to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors. Most lncRNAs are expressed only in a few cells rather than whole tissues, or they are expressed at very low levels, making them difficult to study.

RNA sequencing (RNAseq) samples the majority of expressed genes infrequently, owing to the large size, complex splicing and wide dynamic range of eukaryotic transcriptomes. This results in sparse sequencing coverage that can hinder robust isoform assembly and quantification. RNA capture sequencing (CaptureSeq) addresses this challenge by using oligonucleotide probes to capture selected genes or regions of interest for targeted sequencing. The method involves enriching transcripts of interest by hybridizing them to magnetic bead-linked oligonucleotides that are tiled across the region of interest, allowing for targeted purification, multiplexed library preparation, and RNA sequencing at a high depth.

Investigators at the Garvan Institute of Medical Research (Sydney, Australia) recently compared quantitative real time-PCR (qRT-PCR), RNA-sequencing (RNAseq), and capture sequencing (CaptureSeq) in terms of their ability to assemble and quantify lncRNAs and novel coding exons across 20 human tissues.

They reported in the March 9, 2015, online edition of the journal Nature Methods that CaptureSeq achieved eightfold better sequence coverage for all standard concentrations tested, corresponding to the assembly of as few as 1,550 transcripts in the input RNA. In contrast, RNAseq could not reliably detect low standard concentrations, precluding the measurement of low-abundance standards. In the human leukemia cell line K562, an estimated 42.1% of RNA transcripts were better quantified using CaptureSeq. RNAseq and CaptureSeq performed similarly for 53.2% of transcripts.

While RNAseq performed better than CaptureSeq for the most highly expressed 4.6% of transcripts enriched for housekeeping, structural, and metabolic genes, genes with low expression in K562 cells for which CaptureSeq provided superior quantitative accuracy were enriched for transcription factors and genes associated with cancer or other human diseases.
Finally, the investigators identified 13,796 loci that generated 45,399 lncRNA isoforms, of which 27,596 were previously unknown, with 20.6% more exons and 13.5% more introns compared with previous annotations.

Related Links:
Garvan Institute of Medical Research



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Specimen Radiography System
TrueView 200 Pro
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: EvoLiver is the first test to receive FDA Breakthrough Device Designation in five years in the liver cancer surveillance space (Photo courtesy of Mursla Bio)

Patient-Friendly Blood Test to Transform Liver Cancer Surveillance

Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is the fastest-growing cause of cancer-related deaths. Although clinical guidelines recommend routine surveillance for high-risk... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.