We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Experimental Brain Cancer Drug Disrupts Intracellular Endosome Activity

By LabMedica International staff writers
Posted on 16 Mar 2015
Print article
Cancer researchers have described the mechanism by which the low molecular weight compound 5-Benzylglycinyl-amiloride (UCD38B) disrupts the internal regulation of brain cancer (glioma) cells in a manner that triggers the pathway for programmed cell death (apoptosis).

Chemotherapy rarely succeeds in curing brain cancer due to the existence in the tumor of a subpopulation of non-dividing stem cell-like cells that are unaffected by the treatment. These cells, which reside in tumor regions having negligible or no blood supply and minimal oxygen content, remain quiescent for a time then replicate and regenerate the tumor.

Investigators at the University of California, Davis (USA) have been working with the candidate drug UCD38B, which kills both actively growing and quiescent glioma cells. They described the drug's mechanism of action in the January 29, 2015, online issue of the journal Molecular Pharmacology.

The investigators explained that UCD38B triggered an intracellular process of endocytosis that caused 40%–50% of endosomes containing proteins of the urokinase plasminogen activator system (uPAS) to relocate from the area of the cell membrane to mitochondrial regions in the cytoplasm. Components of uPAS have been found to be highly active in many aggressive cancers, including gliomas, as well as metastatic breast, lung, and pancreatic cancers. The improper re-location of the uPAS enzyme complex caused endosomal “mis-trafficking” which corresponded to mitochondrial depolarization with the release and nuclear translocation of apoptosis-inducing factor (AIF) followed by irreversible caspase-independent cell death.

Preliminary studies carried out with a rodent glioma xenograft model showed that a low molecular weight derivative of UCD38B was very effective in destroying the population of hypoxic glioma cells within the tumor without evidence of adverse effects.

“Understanding the drug mechanism of action of UCD38B and its more potent derivatives is the culmination of many years of work of characterizing the processes causing cancer recurrence and developing molecules that target therapeutically resistant cancer cell types,” said senior author Dr. Fredric Gorin, professor of molecular biosciences at the University of California, Davis. “We are hopeful that this new class of drug will one day become an important adjunct to conventional therapies in fighting these especially difficult-to-treat cancers.”

Related Links:

University of California, Davis


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.