We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Miniature Device to Transform Testing of Blood Cancer Treatments

By LabMedica International staff writers
Posted on 02 Jul 2025

Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for blood cancers like leukemia, offering hope to patients when other treatments fail. More...

However, despite its promise, nearly half of leukemia patients relapse, and many suffer from serious side effects. Efforts to improve CAR T therapies have been hampered by the limitations of conventional testing methods. Traditional models fail to accurately replicate the complex human immune response and the bone marrow environment where leukemia develops. Now, researchers have developed a new solution to bridge this gap—a platform that allows for real-time observation of cancer treatment interactions under controlled conditions, offering a more accurate and patient-specific approach to testing blood cancer therapies.

This innovative platform, termed “leukemia-on-a-chip,” was developed through a collaboration between the Perelman School of Medicine at the University of Pennsylvania (Philadelphia, PA, USA) and the Tandon School of Engineering at New York University (Brooklyn, NY, USA). The device is the first to successfully recreate the physical and immunological environment of human bone marrow on a microscope slide-sized chip. It integrates three distinct bone marrow regions—blood vessels, surrounding marrow cavity, and the outer bone lining—and when seeded with patient-derived cells, it self-organizes to produce structural proteins such as collagen, fibronectin, and laminin. Importantly, the device preserves the immune cell activity within the marrow microenvironment. The system incorporates vascular networks to simulate realistic immune interactions in three dimensions, providing a level of insight and accuracy far beyond 2D cultures or animal models. The development is also timely, coinciding with the FDA’s new roadmap to reduce animal testing requirements in drug development.

In their study published in Nature Biomedical Engineering, the researchers used advanced imaging to watch CAR T cells move through blood vessels, detect cancer cells, and destroy them—processes previously impossible to view with this clarity. They observed that engineered immune cells not only targeted leukemia cells but also activated other immune cells nearby in a “bystander effect” that may explain both therapeutic success and some side effects. The team simulated different patient responses, including remission, relapse, and resistance, and demonstrated that newer, fourth-generation CAR T cells performed better than standard versions, even at lower doses. The chip setup takes just half a day to assemble and supports experiments for up to two weeks, in contrast to animal models that require months. Going forward, the researchers aim to use this platform to test individual patient cancer cells against various treatment designs, enabling a personalized approach to therapy selection before treatment begins.

Related Links:
Perelman School of Medicine
Tandon School of Engineering


Gold Member
Troponin T QC
Troponin T Quality Control
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
Drug Test Kit
DrugCheck 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The plasma biomarker p-tau217, obtained through a blood test, can predict the clinical progression of Alzheimer’s (Courtesy of Adobe Stock)

Simple Blood Test to Predict Alzheimer’s Clinical Progression in Earliest Stages

Alzheimer’s disease is difficult to diagnose in its early stages, often when symptoms are not yet evident, making it challenging to predict the rate of cognitive decline or progression to more advanced... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: How the predictive test works (Photo courtesy of QMUL)

World’s First Clinical Test Predicts Best Rheumatoid Arthritis Treatment

Rheumatoid arthritis (RA) is a chronic condition affecting 1 in 100 people in the UK today, causing the immune system to attack its joints. Unlike osteoarthritis, which is caused by wear and tear, RA can... Read more

Pathology

view channel
Image: A tool uses artificial intelligence and high-resolution imaging to track senescent cells (Courtesy of Adobe Stock)

AI-Assisted Technique Tracks Cells Damaged from Injury, Aging and Disease

Senescent cells, which stop growing and reproducing due to injury, aging, or disease, play a critical role in wound repair and aging-related diseases like cancer and heart disease. These cells, however,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.